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Carland MA, Marcos E, Thura D, Cisek P. Evidence against
perfect integration of sensory information during perceptual decision
making. J Neurophysiol 115: 915–930, 2016. First published Novem-
ber 25, 2015; doi:10.1152/jn.00264.2015.—Perceptual decision mak-
ing is often modeled as perfect integration of sequential sensory
samples until the accumulated total reaches a fixed decision bound. In
that view, the buildup of neural activity during perceptual decision
making is attributed to temporal integration. However, an alternative
explanation is that sensory estimates are computed quickly with a
low-pass filter and combined with a growing signal reflecting the
urgency to respond and it is the latter that is primarily responsible for
neural activity buildup. These models are difficult to distinguish
empirically because they make similar predictions for tasks in which
sensory information is constant within a trial, as in most previous
studies. Here we presented subjects with a variant of the classic
constant-coherence motion discrimination (CMD) task in which we
inserted brief motion pulses. We examined the effect of these pulses
on reaction times (RTs) in two conditions: 1) when the CMD trials
were blocked and subjects responded quickly and 2) when the same
CMD trials were interleaved among trials of a variable-motion coher-
ence task that motivated slower decisions. In the blocked condition,
early pulses had a strong effect on RTs but late pulses did not,
consistent with both models. However, when subjects slowed their
decision policy in the interleaved condition, later pulses now became
effective while early pulses lost their efficacy. This last result contra-
dicts models based on perfect integration of sensory evidence and
implies that motion signals are processed with a strong leak, equiva-
lent to a low-pass filter with a short time constant.

decision making; drift-diffusion model; urgency

MANY MODELS OF DECISION MAKING posit that the brain arrives at
a decision by accumulating evidence in favor of competing
choices until the accumulated total for one of the choices
reaches a fixed decision bound (Bogacz et al. 2006; Gold and
Shadlen 2007; Laming 1968; Ratcliff 1978). In this view, the
rate of accumulation corresponds to the quality of sensory
information, while the bound controls trade-offs between de-
cision speed and accuracy (Reddi and Carpenter 2000). The
most common of these models, the drift-diffusion model
(DDM; Ratcliff 1978), assumes perfect integration of sensory
samples to a fixed bound. This simple and elegant model
replicates reaction time (RT) distributions and error rates
across a variety of tasks (Ratcliff 2002; Ratcliff et al. 2004) and
has been used to explain the buildup of neural activity to a
threshold in many brain regions (Gold and Shadlen 2000,

2003; Kim and Shadlen 1999; Palmer et al. 2005; Ratcliff et al.
2007; Roitman and Shadlen 2002).

While such models capture the intuition that one should
accumulate evidence until the accumulated total satisfies some
criterion of accuracy, an important question concerns what
constitutes evidence in a given situation. In particular, during
the kinds of perceptual discrimination tasks usually studied,
sequential samples of a static stimulus are increasingly redun-
dant; taking a second look may be useful, but taking a tenth or
eleventh is less so. This motivates one to only integrate
information that is novel. Furthermore, in many natural sce-
narios the world can suddenly change, and the decision-making
system must be quick to respond to such changes. For these
reasons, several alternatives to the DDM have been proposed.
In particular, it has been suggested that integration is leaky,
with old information gradually being discounted as new infor-
mation arrives (Busemeyer and Townsend 1993; Roe et al.
2001; Usher and McClelland 2001). This is consistent with the
observation that decisions are dominated by information from
a limited time window (Chittka et al. 2009; Cook and Maunsell
2002; Luna et al. 2005; Uchida et al. 2006; Yang et al. 2008),
emphasizing novel information. It has also been suggested that
the decision bound is not fixed but decreases over time,
possibly because of a growing “urgency” signal that pushes
neural activity toward commitment as time passes (Churchland
et al. 2008; Cisek et al. 2009; Ditterich 2006; Hanks et al.
2014). This proposal is motivated by analyses showing that for
tasks in which subjects are allowed to respond at any time, a
decreasing decision bound yields higher reward rates than any
setting of a fixed bound (Drugowitsch et al. 2012; Thura et al.
2012).

Importantly, if an urgency signal is present, then most
existing data can be explained even if the integration is highly
leaky (Cisek et al. 2009; Ditterich 2006), equivalent to a
low-pass filter with a relatively short time constant (e.g., 200
ms). This is called the “urgency-gating model” (UGM). Cru-
cially, in nearly all previous experiments the sensory informa-
tion provided to subjects was constant within each trial, and
under such conditions a perfect integrator with fixed bound
behaves very similarly to a leaky integrator with an urgency
signal (Cisek et al. 2009; Hawkins et al. 2015b; Thura et al.
2012). Thus data from experiments featuring constant-evi-
dence tasks can support either model, and even sophisticated
comparisons of model fits (Hawkins et al. 2015a) do not
produce consistent answers across tasks, subjects, or modeling
assumptions. Part of the reason is that these models are relative
extremes on a wide continuum of parameters, whereby the
DDM assumes zero leak and a fixed accuracy bound while the
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UGM proposes a strong leak and a growing urgency signal that
implements a decreasing accuracy bound. Deciding on the
appropriate settings of these parameters, even for a specific
subject, is difficult using data that can be fit with a wide range
of parameter combinations. The purpose of the present exper-
iment is to place bounds on the values that these parameters
may take, and therefore to constrain the set of possible models
that may be used to account for behavior during perceptual
decision-making tasks.

We recently conducted two behavioral studies (Cisek et al.
2009; Thura et al. 2012) and one neural recording study (Thura
and Cisek 2014) featuring tasks in which sensory information
changed over the course of each trial. In such conditions,
different settings of leak and urgency parameters produce
clearly divergent predictions that are easy to distinguish em-
pirically. Indeed, the results of those studies were incompatible
with perfect integration and instead supported a UGM with a
filter time constant of 200 ms or less. However, it could be
argued that those results were task dependent and do not
generalize to the kinds of constant-evidence perceptual dis-
crimination tasks usually studied. Consequently, here we aim
to distinguish among perfect vs. leaky integration by observing
the effect of brief motion pulses on subjects’ RTs during the
classic random-dot motion discrimination task. Previous stud-
ies using motion pulses have shown that they can influence
RTs (Huk and Shadlen 2005)—but the critical test examined
here is how the effects of these pulses change as subjects
modify their decision policy.

The logic of our experimental design is illustrated in Fig. 1.
As in a typical random-dot motion discrimination task, subjects
are presented with a noisy coherent motion stimulus that
remains constant within a given trial and are asked to respond
as soon as they detect the direction of motion. Unknown to the
subjects, some trials contain a brief 100-ms increase of motion
coherence at various times after motion onset. If decisions are
made using a perfect integrator such as the DDM (Fig. 1, A and
B), then motion pulses presented prior to the time of decision
will briefly increase the rate of integration and result in deci-
sions that are made earlier, on average, than those made in

no-pulse trials. Pulses that appear later in the trial will have no
effect if the decision bound is low (Fig. 1A), because they
occur too late to affect the decision process. If the decision
bound is high (Fig. 1B), then both early and late pulses will
affect RTs. In other words, as subjects slow down their deci-
sion policy, the time window during which pulses can have an
effect on RTs is predicted to expand. Critically, this model
predicts that early pulses will always be at least as effective as
late pulses in reducing RTs.

If the perfect integrator is replaced with a low-pass filter (a
highly leaky integrator) and combined with an urgency signal,
then early pulses will still have a stronger effect than late
pulses under fast decision policies, i.e., when the urgency
signal grows quickly (see Fig. 1C). However, the reverse will
be true under slower decision policies, i.e., when urgency
grows more slowly (Fig. 1D), because the information pro-
vided by early pulses will have leaked away by the time the
decision bound is crossed. Thus as subjects slow down, the
time window in which pulses are effective is predicted to shift,
and later pulses will become effective while early pulses will
lose efficacy.

Our approach for testing these predictions is to present
subjects with an identical set of pulse trials in two different
contexts: one in which they are motivated to respond quickly
and another in which they are motivated to slow down. Some
of these data have previously appeared in abstract form (Car-
land et al. 2013).

METHODS

Subjects and apparatus. Forty-four right-handed participants (24
women, 20 men; ages 19–37 yr) with normal or corrected-to-normal
vision provided written consent and were naive to the purpose of our
experiment. Participants were seated in front of a large digitizing
tablet placed at arm level for recording movements of a handheld
cordless stylus embedded within a vertical plastic handle (125-Hz
sample rate with 0.013-cm accuracy). Stimuli, targets, and cursor
position feedback were projected by an LCD monitor onto a half-
silvered mirror positioned 16 cm above and parallel to the digitizer
surface, and thus appeared to float on the plane of the digitizing tablet.
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Fig. 1. Schematic of predicted effects of motion
pulses assuming the drift-diffusion model (DDM) vs.
the urgency-gating model (UGM). A: here, following
the DDM, we assume a perfect integrator of motion
signals with a fixed bound that is set to a low value,
to emphasize speed in a “fast” task context. As a
result, early motion pulses (red line) will result in
significantly shorter reaction time (RT) distributions
than in no-pulse trials (black dotted line), but late
motion pulses (blue) will have no effect because they
occur after the decision bound has already been
reached. Schematic RT distributions are shown on
x-axis. B: in a “slow” task context, the bound is set to
a higher value, and as a result both early and late
pulses cause a reduction of RTs compared with no-
pulse trials. C: here, following the UGM, we assume
that the motion signal is low-pass filtered and com-
bined with a growing urgency that is steep, to em-
phasize speed in the “fast” task context. As in A, early
pulses have an effect but late pulses occur too late to
reduce the RT. D: in the “slow” task context, the
urgency is shallower, and so late pulses now signifi-
cantly reduce the RT. However, in contrast to B, early
pulses no longer reduce RTs because their effect has
leaked away by the time the threshold is crossed.
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The subjects’ task was to report the direction of motion of the stimulus
by completing reaching movements toward one of two targets whose
locations corresponded to the potential motion directions. The task
and data collection was programmed in LabVIEW (National Instru-
ments, Austin, TX), stored in a database (Microsoft SQL Server 2005,
Redmond, WA), and analyzed with custom MATLAB scripts (Math-
Works, Natick, MA). The experimental protocol was approved by the
university ethics committee. The data presented in this report are
available upon request from the corresponding author.

Behavioral task. Each trial began when subjects moved the cursor
into a small circular target (1 cm in diameter) near the center of a
white display. After 500 ms, two circular targets (3 cm in diameter)
appeared 6 cm to each side of the stimulus display area, separated by
180°. The targets were projected to appear oriented along the natural
direction of single-joint elbow movements, thereby minimizing any
potential difference in biomechanical cost between the two peripheral
targets (Fig. 2A). Three hundred milliseconds after the start target was
entered, 200 black dots appeared in a borderless circular area (3-cm
diameter) in the center of the display between the two targets. Each of
the dots was redrawn in a new location 2 pixels away from its
previous location on each frame (60 Hz). While most dot movements
were random, a subset of the dots was redrawn along a vector
corresponding to the location of one of the two targets. While the
individual dots assigned to the coherently moving subset changed
from frame to frame, the resulting percept was of a persistent motion
signal whose direction subjects could reliably and accurately report
with a degree of difficulty inversely related to the percentage of
coherently moving dots (Kim and Shadlen 1999; Newsome et al.
1989).

Subjects were given up to 3,000 ms to report the direction of the
coherent motion by moving from the initial start target to one of the
two choice targets and were free to respond at any time. Movements
had to be completed in �1,000 ms and had to land within the chosen
target circle. The motion stimulus continued until the cursor crossed
a target circle’s border. The cursor had to remain within the chosen
target for 500 ms, at which point the outline of the target turned green
or red to indicate a correct or incorrect choice, respectively. After a
brief intertrial interval of 500 ms, all on-screen objects disappeared
except for the starting target, and a new trial began.

In the analyses reported here, response times (RTs) for each trial
were obtained post hoc by determining the precise moment at which
the cursor’s velocity began to increase from a point of rest within the
start target. However, an ad hoc estimate of RT based on the time at
which the cursor exited the boundary of the start target was used to

obtain session-specific estimates of subjects’ mean RTs; these were
then used to provide online feedback during the experimental ses-
sions, as described below.

Before each session began, we presented the subject with 40 very
easy motion-discrimination trials in which the motion coherence was
100% and instructed them to respond as rapidly as possible. The
average RT from these trials was then stored as a session-specific
estimate of “non-decision time” comprising both sensory and motor
delays (mean � 475 ms, SD � 103 ms). This measurement was used
to classify correct and incorrect responses for trials in which the
motion signal could change directions over the course of a single
decision (see below). Importantly, these initial 40 trials were the only
ones for which subjects were ever provided with explicit instructions
about how quickly to respond: for the main experimental task,
subjects were informed of the 3-s time limit but were told that they
could make their decision whenever they liked, although most of our
subjects very rarely took �1,800 ms to make their decision.

For any experimental session, subjects completed one of two
session types: “blocked” or “interleaved.” “Blocked” sessions con-
sisted entirely of trials with a single, common baseline motion
coherence value of 3%: we refer to these as “constant-motion dis-
crimination” (CMD) trials. In 40% of such trials there were no
additional changes to the stimulus, and we refer to these as “no-pulse”
trials. The remaining 60% of the CMD trials contained brief motion
“pulses” during which the coherence of the motion stimulus was
doubled (to 6%) for 100 ms. Such brief coherence manipulations have
previously been shown to affect response timing in motion discrimi-
nation tasks (Huk and Shadlen 2005; Wong et al. 2007), even though
they are not consciously detectable by our subjects (confirmed by
postexperiment interview and consistent with similar studies; see
Kiani et al. 2008). Thus, as far as the subjects were aware, the motion
coherence for all CMD trials appeared to remain constant throughout
each trial, regardless of whether a pulse was or was not actually
shown. These pulses could occur 100, 200, or 400 ms after stimulus
onset, and we refer to such trials collectively as “pulse” trials. Each of
these pulse timing conditions thus comprised 20% (60% total) of the
total number of trials in the “blocked” condition.

“Interleaved” sessions consisted of a mix of trial types. Twenty
percent of the trials in these sessions were CMD trials—including
both pulse and no-pulse trials—identical in every respect to those
presented in the blocked sessions. Each of the four CMD trial types
comprised 5% of the total number of trials encountered during these
sessions. These CMD trials were randomly interleaved among “vari-
able-motion discrimination” (VMD) trials, which comprised the re-

3%
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+
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Fig. 2. Experimental setup and the variable motion discrimination (VMD) trials. A: overhead view of the experimental display. Subjects discriminated the
direction of movement of a random-dot motion display contained within a central circle (the border of which was not drawn on screen) by moving a handheld
stylus (solid black circle) from a start target (small circle) to 1 of 2 equidistant peripheral targets, each separated by 180° and oriented with respect to the elbow’s
natural direction of motion. B: example trajectories of the time course of motion evidence in VMD trials. After being initialized at 0% at the beginning of each
trial, the motion signal is adjusted in increments of 3% motion coherence toward 1 of the 2 targets (with equal probability) every 200 ms. Note that when the
motion signal already favors a target, a step “toward” the opposing target corresponds to a weakening of the strength of the motion signal.
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maining 80% of the interleaved session. These trials began with a net
motion coherence of �3%, and this motion signal was adjusted either
up or down in 3% steps every 200 ms (sometimes reversing the
direction of motion; see Fig. 2B). Of the VMD trials, 60% were
random, such that each motion coherence change was given an
independent and equal probability of favoring either of the two
possible targets. The remaining 40% of trials were divided among a
number of pregenerated trial types similar to those featured in previ-
ous studies (Cisek et al. 2009; Thura et al. 2012)—these included
“easy” and “ambiguous” trial types, as well as a variety of “bias”
trials. These trials were included to test whether effects previously
reported (Thura et al. 2012) were still observed in our subjects. In
brief, “easy” trials were those in which the motion signal reached
�9% within the first 800 ms and remained at or above 9% for the
remainder of the trial; “ambiguous” trials were those in which the
absolute motion signal remained within 6% of zero throughout the trial.
“Bias” trials included brief biases (800 ms or 1,000 ms) either for or
against the final motion direction and then resembled easy trials (see
Thura et al. 2012 for details). Since the previously reported effects were
indeed confirmed, we do not analyze these further and refer the reader to
Thura et al. (2012).

Each session type consisted of a single pseudorandom, predefined
sequence of trials that was the same for all subjects. Subjects had to
achieve a total of 560 correct trials to complete one “blocked” session
or 500 to complete an “interleaved” session. Correct trials were
always defined with respect to whether the net direction of the motion
signal indicated the chosen target at the time of the subject’s decision.
Decision accuracy classification was straightforward for CMD trials,
in which the motion signal always favors one of the two targets; in
contrast, the motion signal in VMD trials could sometimes indicate
different targets over the course of a single trial. We therefore
determined decision accuracy for VMD trials by subtracting each
subject’s estimated non-decision time from the approximate time of
the start of the movement with which he/she reported his/her decision.
The trial was counted as correct if the motion signal at this time
indicated the chosen target, even if the signal had changed directions
between the effective decision time and the offset of the motion
stimulus. Both session types took �50 min on average to complete,
depending on an individual subject’s speed and accuracy on that day.
Importantly, however, subjects were paid the same amount per session
($20 CAD) regardless of how long it took for them to reach the
required quota of correct trials. Thus, while we otherwise provided no
explicit penalty for wrong answers, the structure of the task nonethe-
less implicitly motivated subjects to minimize the total session dura-
tion by finding a decision policy that maximized success rate for each
experimental session.

Crucially, our two session types differed with respect to the value
of stimulus observation time. In blocked sessions, the average success
rate was not appreciably improved with longer observation times
because the motion in CMD trials was essentially constant; in other
words, all relevant decision information was fully present from the
start of each trial and therefore motivated relatively rapid decisions. In
contrast, the interleaved sessions predominantly featured VMD trials.
In these trials not only does the motion signal itself change over time,
but—crucially—the range over which it may vary increases in direct
proportion to elapsed time. Thus the more one prolongs one’s deci-
sion, the greater the chance that the motion signal will reach a value
of larger magnitude. Because this tendency is unique to the VMD
trials, which only appear in interleaved sessions, we expected that
subjects would exploit this by generally adopting a slower decision
policy during the interleaved sessions relative to the blocked sessions.
With respect to the two models being tested, this difference in
decision policy can be achieved either by increasing the decision
bound, as per Fig. 1, A and B, or by decreasing the urgency signal’s
slope, as per Fig. 1, C and D.

Consequently, we expected that this difference in decision policy
between task conditions would result in systematically different RTs

during the otherwise identical CMD trials common to both session
types. Note that while subjects were generally able to discern that
some sessions were different from others, postexperiment interviews
revealed that they could not specify the precise nature of the differ-
ences in the stimuli across sessions; nor could they detect the presence
of the pulses in CMD trials or specific types of VMD trials. Further-
more, even had they been able to tell the difference between session
types, the fact that trial sequences were randomized would preclude
them from being able to know in advance what type a given trial
would be. Thus we can be confident that any differences in our
subjects’ decision policies in CMD trials across session types indi-
cated adaptations to the implicit reward structure inherent to each
session type as a whole, rather than specific strategies adopted on a
trial-by-trial basis.

Most importantly, this contextual manipulation of decision policy,
if successful, would allow for an empirical discrimination of the
divergent predictions of the DDM and UGM by comparing trials in
which evidence is identical and only the effective decision policy
differs (as per Fig. 1). Specifically, if early pulses have an effect on
RTs that is always at least as strong as late pulses, then this would
support a pure integration model such as the DDM. If, instead, early
pulses lose their efficacy as decisions are slowed while late pulses
become more effective, then this would support models in which
evidence is not integrated over time but instead low-pass filtered with
a highly leaky integrator.

To test these predictions, we initially ran 39 subjects for three
sessions each (1 blocked, 2 interleaved), thereby allowing across-
subject analyses (total trials � 90,302). Then, to obtain enough data
to perform within-subject analyses, we ran four of these subjects plus
an additional five new subjects for 10–24 sessions each (total trials �
71,736).

Modeling. To implement the DDM, we use the following equation:

dx

dt
� aE � N (1)

where evidence E is set to 1 to simulate 3% coherent motion and
increased to 2 for 100 ms to simulate the motion pulse. The variable
N denotes 1,000-Hz intratrial Gaussian noise with mean zero and
standard deviation �. The variable a denotes an “attentional gain” that
varied from trial to trial with mean 1 and standard deviation 1.5,
effectively implementing endogenous variations in the signal-to-noise
ratio that differed across trials but was constant within each trial
(negative assignments to parameter a were redrawn from the source
distribution until it was positive, and thus this parameter was never
permitted to be negative). The decision was made when the variable
x(t) reached a threshold �T, and a non-decision delay of t0 � 300 ms
was added to yield the total RT. The T and � parameters were
adjusted to fit the data separately in the blocked and interleaved
conditions, using an exhaustive grid search to find the pair that
minimized the mean squared error between the model’s estimate of
the median RT in no-pulse trials and its estimate of the effect of the
100, 200, and 400 ms pulses on median RT (the latter 3 error terms
were multiplied by 10 to emphasize the importance of these effects).
After finding the best parameters with a grid search, we fine-tuned
them by hand to further improve the fit. The purpose of all of our
fitting procedures was to capture the qualitative differences among the
various pulse conditions (e.g., relative effect of early vs. late pulses),
with less emphasis placed on precise quantitative fits. For reasons
explained below, in some simulations we also allowed the model extra
parameters to implement a delay between the onset of motion and the
start of integration.

To implement the UGM, we first low-pass filter the sensory
information with a first-order linear differential equation:
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�
dx

dt
� �x � �aE � N� (2)

where the time constant is set to � � 167 ms. Note that the precise
value of the time constant is difficult to establish with confidence from
behavioral data, because any changes of the time constant can be
“traded off” with changes to the intertrial variability of the urgency
signal or other potential variance parameters. Thus not knowing the
precise value of these parameters ahead of time either necessitates the
introduction of an intractably large number of free parameters or else
calls for assumptions about what these parameters may be. Conse-
quently, we assumed a time constant of 167 ms on the basis of a
number of previous behavioral and physiological studies that have
suggested that it must be at least 100 ms (Cisek et al. 2009; Thura et
al. 2012) and at most 200 ms (Thura and Cisek 2014). The evidence
(E) and attentional gain (a) parameters were exactly the same as in the
DDM, and intratrial noise was 60 Hz with mean zero and standard
deviation set to � � 5.

The resulting variable x(t) is then combined with an urgency
signal as

y�t� � x�y� · U�t� (3)

where U(t) is the urgency signal that rises from zero with a slope that
varies from trial to trial according to a log-normal distribution with
parameters � and �. While our analyses of monkey behavior suggest
that the urgency signal has a nonzero baseline value that can vary with
speed-accuracy trade-offs (Thura et al. 2014), here we simply set its
baseline to zero so as to avoid introducing another free parameter. The
decision was made when the variable y(t) reached a threshold of T �
�300, and a non-decision delay t0 � 300 ms was added to yield a RT.
To simulate each of the conditions (blocked and interleaved), we
picked values of � and � that produced the best fit to the mean and
standard deviation of the RT distribution from 3% coherence no-pulse
CMD trials in each condition. We then used the same parameter
settings when simulating pulse trials, trusting the effects of our
different pulse timings to “fall out” out of the parameters used to fit
the no-pulse trials.

Note that for each model two parameters were adjusted to fit the data.
For the DDM these were the threshold T and the noise �, while for the
UGM they were the � and � parameters used to determine the urgency
slope. These pairs are functionally related: T and � influence the means
of RT distributions, while � and � influence their variability. While the
settings of the DDM parameters were determined through an exhaustive
search for the least mean squared error fit to data from all trials, the UGM
parameters were only adjusted to fit the no-pulse trials, and the effects of
pulses expected to follow simply from the assumption of a short time
constant. The models were used to simulate 5,000 trials for each trial type
in each task condition, and the results were analyzed in the same way as
the behavioral data.

RESULTS

Effects of sessions. The first step of our analyses was to
determine whether our manipulation of decision policy suc-
ceeded in slowing subjects down in the interleaved condition.
We did this by comparing RTs for identical no-pulse CMD
trials across the two conditions. Mean (�SE) RTs of individual
subjects are shown in Fig. 3A for constant-evidence, 3%
motion coherence trials without pulses in both the “blocked”
and “interleaved” conditions. All individual data points lay
above the unity slope line, indicating that the mean RTs for
identical CMD trials were slower when these were interleaved
among VMD trials than when blocked together (P � 3.3 �
10	41, K-S test), thereby corroborating the efficacy of our deci-
sion policy manipulation. Similarly, cumulative RT distributions

for no-pulse CMD trials for the nine subjects who completed the
greatest number of experimental sessions (Fig. 3, B and C) both
show a clear rightward displacement along the x-axis, indicating
later RTs in the interleaved condition.

The main effect on overall mean RT was found for nearly all
of our subjects (42/44 subjects, P � 0.05 for each, K-S test)
despite the otherwise large intersubject variability in overall
speed. Thus while some subjects tended to be considerably
faster than others, all of them individually slowed down during
the interleaved sessions. Crucially, this behavior emerged de-
spite the fact that no explicit instructions were ever provided to
the subjects regarding the timing of their decisions. The
strength and consistency of this result across all of our subjects
thus strongly supports the effectiveness of our contextual
manipulation on subjects’ decision policies. Moreover, be-
cause these differences obtain in no-pulse CMD trials that
were otherwise identical, the most parsimonious interpreta-
tion of this effect implicates a slowed decision policy for the
interleaved sessions relative to the blocked sessions. This
corresponds within the framework of the DDM to increasing
the decision bound during interleaved sessions or in the
framework of the UGM to decreasing the slope of the
urgency signal (Fig. 1).

Effects of pulses on reaction times. Next, we analyzed the
effects of pulses in each task context to distinguish between the
specific predictions of each model under conditions of chang-
ing evidence (Fig. 1). Similar to the above, this analysis also
focused exclusively on CMD trials (both with and without
pulses), which were identical in both session types.

As can be seen in Fig. 3A, collectively our subjects varied
greatly in terms of average RTs within both task conditions.
Such intersubject variability prohibited a general comparison
of across subject means, as pooling together data from subjects
with such different RT distributions could weaken any latent
significant effects within each subject. Additionally, normaliz-
ing by RT would obscure the time course of the impact of
evidence on the developing decision. Thus we instead pooled
subjects into subgroups on the basis of the similarity of their
mean RTs. Two such subgroups are indicated in Fig. 3A. The
“fast subgroup” was defined so as to capture fast responders
while including most of the subjects for whom we had 10

sessions’ worth of data, while the “slow subgroup” aimed to
capture a similar range of slower responders.

The pooled RT distributions for all CMD trials appear in
Fig. 4. For the “fast” subgroup (Fig. 4A), the 100 ms and 200
ms pulses significantly sped up RT in the “blocked” condition
(K-S test P � 6.7 � 10	16 and P � 1.8 � 10	9, respectively),
while pulses at 400 ms had no significant effect (P � 0.21, K-S
test). For the interleaved sessions, however, the 100 ms pulses
lost their efficacy (P � 0.052, K-S test), while the 400 ms
pulses became effective (P � 2.1 � 10	5, K-S test). The 200
ms pulses remained effective in the interleaved condition (P �
0.002, K-S test). This is consistent with the predictions shown
in Fig. 1, C and D.

Results for a second, “slow” subgroup appear in Fig. 4B. For
these subjects, the mean RTs were long even during the
“blocked” condition, and none of the pulses had a significant
effect on decision timing, although there is an apparent trend
for faster decisions with later pulses (Fig. 4B, top). RTs for the
“interleaved” condition are even later, and also not affected by
any of the pulses (Fig. 4B, bottom). Note, however, that this
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subgroup consists only of subjects who completed three ses-
sions each (see Fig. 3A) and therefore comprises substantially
fewer trials than the “fast” subgroup, which may therefore
account for the failure of this trend to reach statistical
significance.

While here we have shown only two subject groups, other
arbitrary groupings of subjects along similar lines (data not
shown) yield effects that are qualitatively similar to those
discussed above. Similar results were also obtained on the level
of individual subjects. Figure 5A shows the cumulative RT
distributions from blocked and interleaved sessions for one
representative subject (subject JM; nsessions � 20, ntrials �
12,900). Like 42/44 subjects, JM’s median RTs for all CMD
trial types were significantly shorter during the blocked con-
dition than during the interleaved condition (727 ms vs. 1,057
ms, P � 1.53 � 10	80, K-S test). Furthermore, in the blocked
condition, the 100 ms and 200 ms pulses significantly sped up
JM’s RTs (P � 6.98 � 10	12 and 2.42 � 10	6, respectively,
K-S test), while pulses at 400 ms were not significantly
effective (P � 0.21, K-S test). When JM was completing an
interleaved session, however, pulses at 400 ms now signifi-
cantly sped up RTs (K-S test P � 0.03), while the RT
distributions for trials with early pulses (100 ms and 200 ms)

were no longer statistically distinguishable from no-pulse trials
(K-S test P � 0.75 and 0.98, respectively).

A similar—though not identical—pattern obtained for other
subjects as well. For example, for subject VC (nsessions � 16,
ntrials � 9,957; data summary shown in Fig. 5B) only the 200
ms pulse had a significant effect in the blocked condition (K-S
test P � 0.016 in the blocked condition, P � 0.27 in the
interleaved condition), whereas only the 400 ms pulse was
effective in the interleaved condition (K-S test P � 0.38 in the
blocked condition, P � 0.001 in the interleaved condition). For
subject SC (nsessions � 16), the first two pulses were effective
in the blocked condition, whereas only the last two were
effective in interleaved sessions. Overall, of the nine subjects
who performed �10 sessions, six (JM, EC, VC, SC, EG, TM)
showed patterns in their data that are qualitatively consistent
with the results described above, insofar as the most effective
pulse was earlier in the blocked than in the interleaved condi-
tion (although this only reached significance in 4/6 cases). Of
the remaining subjects, two (FK and CS) showed no effects of
pulses at all (these were our two slowest subjects), while one
(LH) showed similar effects in both blocks (this subject was
fast in both blocks) (Fig. 3A). This too is consistent with the
UGM, which predicts that the relative difference between a
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subject’s overall mean RT and the timing of relevant changes
in sensory evidence determines the extent to which these
changes influence the timing of the decision. Because the pulse
timings we selected occurred relatively early in a trial, the
differences between the effects of these pulses on RT between
the two session types are most pronounced for subjects whose
mean RTs are relatively short. A clear demonstration of this
comes from the fact that one subject’s RTs were extremely
slow (Fig. 3B, outlying red line) and did not appear to be
influenced by any pulses in either condition—as if they had
leaked away.

The relationship between the median RT of an individual
subject and the efficacy of pulses at different times is summa-
rized in Fig. 6, where the fastest eight of our subjects with �10
experimental sessions are plotted together to illustrate how the
effect of a given pulse on RT depends on the RT itself. In the
blocked condition—where RTs are faster for any given sub-
ject—the 100 ms pulse has the strongest effect, followed by the
200 ms pulse, with the 400 ms pulse having little or no effect.
However, for the slowest subjects (TM, FK) even the effects of
100 ms and 200 ms pulses are reduced. In contrast, the patterns
of effects are inverted in the interleaved condition, where

median RTs are longer. Here, most of the subjects are most
strongly influenced by the 400 ms pulse, while some relatively
faster subjects are also influenced by the 200 ms pulse. While
there is variability in the data, and many points do not reach
significance, there is a clear tendency for early pulses to be
stronger than late pulses in the blocked condition, while the
opposite is true in the interleaved condition. Furthermore, there
is a “window” of RTs in which the pulses influence behavior,
and that window shifts as subjects slow down their decision
policy. The 100 ms pulse is most effective on RTs between 650
and 750 ms (blocked sessions), while the 400 ms pulse is most
effective (in interleaved sessions) �300 ms later, as expected.

Analyses of performance accuracy. For the fast subgroup of
subjects, accuracy in the no-pulse CMD trials was 83.0%
(9,939/11,969) during the blocked condition and 86.4% (1,703/
1,972) during the interleaved condition, and this difference was
significant (binomial test, P � 0.01). Within the blocked
condition, pulses at 100 ms produced a slight and significant
increase in accuracy (2,633/2,997, 87.9%), as did pulses at 200
ms (2,587/3,002, 86.2%), but the increase in accuracy in 400
ms pulse trials (2,548/3,007, 84.7%) was not significant (bino-
mial test, P � 0.05). Within the interleaved condition, none of
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the pulses had a significant effect on accuracy (100 ms:
926/1,120, 82.7%; 200 ms: 908/1,034, 87.8%; 400 ms: 996/
1,132, 88.0%). These trends can be captured by both the DDM
and UGM (data not shown), and therefore do not help to
distinguish between the models.

Figure 7 shows that the accuracy of decisions decreases as
RTs increase, for all conditions, both for individual subjects
(subject JM shown) as well as for both the “fast” and “slow”
subject subgroups. This may at first appear paradoxical, since
longer viewing of a motion stimulus should allow one to better
filter out noise and thus better estimate the underlying signal.
An increasing accuracy with time is often reported in tasks in
which observation time is externally controlled (Ratcliff and
Rouder 1998, 2000; Ratcliff and Smith 2004). However, in our
task the subjects are allowed to respond at any time, which
means that the distribution of trials within each RT bin can be
distorted by the distribution of trials in earlier bins. In such
conditions, a decreasing performance for longer RTs can be
easily explained if we suppose that a subject’s attention can
vary between trials. If a subject happens to be more attentive
on a given trial, then he/she will both respond more quickly
and be more accurate than if he/she is less attentive. Thus the
short RT trials will be biased toward those in which attention
was high, while the long RT trials will be biased toward those

in which attention was lower. As a result, accuracy will tend to
decrease for longer RT bins, and in theory this should hold for
both models.

Modeling results. As shown in Fig. 8, both models correctly
simulated the tendency for accuracy rates to decrease over
time. This tendency simply results from variations in the
“attentional gain” parameter a, included in both models, which
effectively varies the signal-to-noise ratio from trial to trial.
This causes differences in the distribution of otherwise identi-
cal trials in different RT bins, as described above. We added
this parameter because the results shown in Fig. 7 may other-
wise be taken as direct evidence for a dropping bound, and thus
favor the UGM (which effectively implements a decreasing
bound by including a growing evidence-independent urgency
signal). However, that conclusion would not be accurate; both
the UGM and the DDM can explain this phenomenon, so it
cannot be used to distinguish between the models. The true
distinction between the model predictions lies in analyses of
the effects of pulses on RT distributions (see Fig. 1), to which
we turn next. Importantly, all of the simulations described
below have been performed both with and without the atten-
tional gain parameter, yielding qualitatively identical results.

Figure 9 shows the RT distributions produced by a UGM
with a filter time constant of 167 ms (see METHODS) and urgency
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signal parameters that were condition dependent: for the “fast”
subgroup, the slopes of the urgency signals were drawn from a
log-normal distribution with � � 	0.50 and � � 0.65 for
modeling the blocked condition and � � 	1.65 and � � 0.7
for modeling the interleaved sessions. These parameters were
chosen so that the RT distributions produced by the model for
no-pulse trials fit those of the fast subgroup (Fig. 4A). Next, the
various pulses were added to the simulated input signal and
their effects on RT determined by the same analyses performed
on the real data.

As expected, the output of a model parameterized according
to the data obtained from the “fast” subgroup resulted in the
100 and 200 ms pulses being effective during the blocked
condition (Fig. 9A, top; K-S test P � 7.2 � 10	22, P � 3.7 �
104, respectively), while the 400 ms pulse was not (P � 0.31,
K-S test). In contrast, during the interleaved condition, the
200 ms and 400 ms pulses were effective (Fig. 9A, bottom;
K-S test P � 3.7 � 10	6, P � 3.2 � 10	6, respectively)
while the 100 ms pulse was not (P � 0.07, K-S test), as
expected (Fig. 1D).
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Data from the “slow” subgroup were modeled in a similar
way (Fig. 9B), with urgency parameters � � 	0.41, � � 0.30
for the blocked condition and � � 	0.50, � � 0.17 for the
interleaved condition. With these parameters, the UGM pre-
dicted that 400 ms pulses will have an effect in both conditions
(blocked P � 0.04, interleaved P � 0.01, K-S test). While such
a trend can be seen in the “slow” subgroup data from the
blocked condition (Fig. 4B, top), it did not reach significance,
perhaps because this subgroup contained only a few sessions of
data for each subject.

Figure 10A shows simulations of the DDM with parameters
adjusted to fit the “fast” subgroup. For the blocked condition,
the best fit was provided by T � 550 and � � 16, and these
parameters simulated the major features of the data quite
well—correctly producing an effect of 100 ms and 200 ms
pulses (K-S test P � 9.6 � 10	39, P � 2.2 � 10	12,
respectively) but not late pulses (P � 0.07, K-S test). For the
interleaved condition, the best-fitting parameter settings were
T � 1,550 and � � 35, and they correctly predicted a
significant effect of 200 ms and 400 ms pulses (K-S test P �
1.9 � 10	8, P � 5.5 � 10	4, respectively). However, the
DDM also predicted that the 100 ms pulses had a significant
effect (P � 4.4 � 10	11, K-S test), as is clear by examining the
cumulative RT distributions. This prediction follows directly
from the assumption of perfect integration, which is inherent in
the DDM and which does not depend on parameter settings.
For the same reason, the DDM predicts that for the “slow”
subgroup of subjects all pulses always have significant effects
in both blocked and interleaved conditions (Fig. 10B; P �
10	4 for all pulses, K-S test). The best-fitting parameters for
the slow subgroup were T � 1,100 and � � 25 for the blocked
condition and T � 2,500 and � � 40 for the interleaved
condition.

Delays in onset of integration. Because the motion signal
during VMD trials can often reach conspicuously high values,
but nonetheless cannot grow much in strength until several
steps into the trial, it could be argued that during the inter-
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leaved sessions our subjects had simply learned to delay the
onset of evidence integration for the first few hundred milli-
seconds so as to avoid having to discern weak early motion in
favor of what could be assumed to be an easier discrimination
later on. If this was true, it would cause them to show no effects
of the earliest pulse timings (e.g., the 100 and 200 ms pulses)
in the interleaved CMD trials, because these pulses would have
already ended before the subjects began integrating evidence.
Correspondingly, if the onset of integration was delayed by
200–300 ms, the 400 ms pulse would effectively become a 100
ms pulse, which would explain why such pulses suddenly
became effective in the VMD sessions. This would explain not
only the shifts in pulse efficacies obtained in the VMD condi-
tion but also the slower RT distributions for all VMD trials in
general, providing an explanation for the data that would still
be consistent with the DDM.

To test this conjecture, we added two more parameters to the
DDM to allow a preintegration delay with a mean and standard
deviation. For modeling the blocked sessions, we set both of
these to zero because the DDM could fit that data without any
preintegration delay. For modeling the interleaved session, we
searched for the best-fitting setting of threshold and preinte-
gration mean (with standard deviation set to 100 ms). With
T � 1,250 and preintegration delay of 150 � 100 ms, the DDM
correctly simulated our finding that 100 ms pulses lost efficacy
in the interleaved session, simply because most of them were
ignored by the model.

However, for obvious reasons such a model could not
produce decision times that are shorter than the preintegration
delay. Only 0.7% of its decision times were made before 200
ms and only 9.1% before 400 ms. This contrasts with the data,
in which we observed that 11.6% of decision times in no-pulse
trials were shorter than 200 ms and 27.6% were shorter than
400 ms. Importantly, these early decisions were not merely
random; they were correct 78.9% and 78.2% of the time,
respectively, indicating that the early information was not in
fact being ignored by our subjects.

In summary, the DDM could be parametrized either to
capture the patterns of pulse efficacy in the interleaved trials or
to produce early decisions comparable to those observed in the
data, but we found no setting of parameters that could allow it
to reproduce both of these findings. Nevertheless, it is possible
that advocates of the DDM may find other ways to modify that
model to explain our results. To that end, our data are available
upon request.

DISCUSSION

The main result of our study is that when subjects slow down
their decision policy the effect of early pulses becomes weaker
while the effect of later pulses grows (Figs. 4–6). Although the
specific pattern of pulse efficacy varied across subjects, the
earliest pulse timings consistently lost their efficacy as subjects
slowed down. This result is important because it cannot be
reproduced by any model involving perfect integration of the
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motion signal (Fig. 10). In particular, the DDM predicts that
early pulses will always be at least as effective as late pulses in
reducing RTs, because a perfect integrator retains all input
until decision time regardless of the threshold setting. To
explain our results, a strong leak would have to be added to the
DDM, effectively turning it into a low-pass filter with a
relatively short time constant. Our previous analyses of behav-
ioral and neural data in changing-evidence tasks suggest that
the time constant is between 100 and 250 ms (Cisek et al. 2009;
Thura et al. 2012; Thura and Cisek 2014).

There may be many reasons why subjects slow down during
the interleaved sessions. Above, we proposed that they do so
because in the VMD trials higher motion strengths are reached
later in time, and thus many individual trials tend to get easier
with longer viewing. It is also possible that subjects slow down
because sometimes the net direction of motion might change
just after they make their decision, reducing their overall
confidence. While such reversals occurred in �3% of trials, the
very possibility of reversals might motivate subjects to be more
conservative. There may still be other reasons. Regardless of
why subjects slow down, different models suggest different
mechanisms for how they do so. The DDM assumes that there
is a change in the threshold, while the UGM assumes that there
is a change in urgency. Other mechanisms may also be pro-
posed, such as a reduction in the strength of recurrent feedback
in attractor-type models (e.g., Wang 2002). What is important
to emphasize, however, is that our present results and their
interpretations are not dependent upon any of these issues.
Regardless of why subjects slow down and regardless even of
how they do so, it is the fact that they slow down that is most
pertinent to the question of the time constant. If slowing down
causes early pulses to lose their efficacy, then the time constant
must be short.

Possibility of a “two-model” solution. One possible objec-
tion to the above interpretation, however, is that our subjects
may have employed radically different strategies during each
of our two session types. For example, perhaps they used a
DDM in our blocked sessions (and in previous studies) and a
UGM in our interleaved sessions. Because none of the trials
presented in the blocked sessions ever exceeded 3% baseline
motion coherence, all trials in the blocked condition can be
considered fairly difficult, which may therefore have motivated
our subjects to integrate motion evidence with a long time
constant. By contrast, VMD trials presented during the inter-
leaved sessions could often reach much larger values of coher-
ence, and may therefore have motivated subjects not to inte-
grate motion evidence across time but rather to simply wait for
the motion signal to become highly conspicuous before
deciding.

However, there are a number of reasons to doubt this
account. First, in both sessions subjects were always given the
same instruction: to respond as soon as they were able to detect
any motion signal at all. This is the same instruction typically
given to subjects in a large variety of studies using the
random-dot task in conditions similar to our blocked sessions.
Thus the only feature of the task that may have motivated
subjects to change their strategy in interleaved sessions is the
reinforcement provided regarding correct or incorrect choices.
If our subjects’ default strategy was to use a perfect integration,
the only reason they would switch to an alternative, short-time-
constant strategy would be if they were penalized often enough

for choosing the direction indicated by the total net motion but
contraindicated by the current motion at the time of their
decision. Such cases—if they occurred often enough to be
noticeable—might motivate subjects to begin to discard past
evidence, and to instead weight recent evidence more heavily.

To examine this possibility, we compared overall accuracy
rates that would ensue from a post hoc reclassification of
“correct” and “incorrect” choices according to the total cumu-
lative motion evidence, as opposed to our original classifica-
tion based on the sign of the motion evidence at the estimated
time of decision. This revealed that out of all VMD trials
completed by our subjects, only 9% would have been incor-
rectly reinforced according to a cumulative-motion-evidence
criterion, and that this discrepancy falls to only 3% when
considering VMD trials in which the motion signal ever
reached or exceeded 15% coherence, i.e., the trials that would
have conspicuously stood out to the subjects. Consequently, it
seems unlikely that the reinforcement provided to our subjects
was significant enough to be responsible for the changes in
decision strategy we observed across the session types.

Furthermore, the logic of this proposal can be reversed. In
natural behavior, sensory evidence does change, and changes
often. To react quickly to such changes, leaky integration is
much more effective than perfect integration, which first needs
to “undo” previously accumulated evidence before moving
toward the new decision bound. Thus reinforcement in the real
world would seem to favor mechanisms with short time con-
stants (as long as the time constant is long enough to filter out
noise) as the default strategy. This then raises the question of
why humans would ever change their strategy and use perfect
integration, even when performing a standard constant-motion
discrimination task. In such tasks the motion does not change,
so the reinforcement obtained by a perfect integrator would be
no different than that obtained by a leaky model.

Finally, while a two-model solution is plausible, it lacks
parsimony. It proposes two different models for explaining two
different kinds of data and necessitates additional mechanisms
for arbitrating between them. From a modeling perspective, it
is certainly possible that such a hybrid, “switching” model
could produce better quantitative fits to our data; however, by
the same token, such a model would necessarily include a
larger total number of parameters than either model by itself.
Any measure of goodness of fit to any given data set would be
penalized by the additional parameters of the switching mech-
anism as well as those of the “unused” model, and therefore
rank low according to traditional model-comparison measures
(e.g., AIC/BIC criteria, etc.). In contrast, the UGM can explain
all of the data with just a single parameter change—a modifi-
cation of urgency—that is motivated by optimization of reward
rates. In a recent paper (Thura and Cisek 2014), we directly
demonstrated that neural activity in dorsal premotor and pri-
mary motor cortex combines both urgency and evidence-
related components, and that the latter is processed with a short
time constant. While this used a different species and a differ-
ent task, we propose that the conclusions generalize to a broad
range of tasks and species. Indeed, although we acknowledge
that perfect integration is commonly assumed when interpret-
ing data, we are not aware of data that conclusively prove that
assumption to be correct.

Narrowing down the value of the time constant. The present
results could, in principle, be explained by the leaky competing
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accumulator (LCA) model (Ossmy et al. 2013; Tsetsos et al.
2012; Usher and McClelland 2001), as long as the leak param-
eter is set high enough to produce a short time constant. With
such a high leak, however, the evidence signal in the LCA
model will equilibrate long before it reaches any appreciable
bound, and until that point the temporal shape of the buildup
will be a saturating exponential, not the linear buildup usually
observed in neural data (cf. Roitman and Shadlen 2002).
Consequently, something else is needed to explain the pro-
longed linear time course of neural activity growth and long
decision times. We and others have proposed that this growth
is at least partially caused by an urgency signal that pushes
neural activity toward the threshold even in the absence of new
evidence, effectively implementing a decreasing accuracy
bound (Churchland et al. 2008; Cisek et al. 2009; Ditterich
2006; Thura et al. 2012). In fact, the UGM is equivalent to the
LCA model with a high leak parameter and an urgency signal.
Such a model can explain not only the present data but also the
lack of biasing effects observed by Thura et al. (2012), sug-
gesting that the effects observed in that study are not task
dependent but rather indicative of a general strategy of low-
pass filtering a noisy stimulus signal.

A recent analysis using the LCA (Ossmy et al. 2013)
suggested that time constants can change between conditions
with different distributions of signal durations. Across subjects,
the best-fitting time constant values varied from 29 ms to 1,995
ms (mean 78 ms and 493 ms) in the two conditions (see their
Table S2). However, because the LCA assumes a fixed bound,
it forces the use of a long time constant for explaining any late
decisions. We believe that if that assumption was relaxed, and
the bound was allowed to decrease through the use of a
context-dependent urgency signal, then long decisions could be
explained even if the time constant was always short.

While a precise estimate of the time constant is difficult to
make without direct neural data, the present results are none-
theless useful for providing bounds on the possible values that
it may take. In particular, while results similar to Fig. 9 could
be generated with a 200-ms time constant, a 250-ms time
constant consistently predicts a significant effect of the 100 ms
pulse even in the interleaved sessions, in contrast to our data.
In principle, one could use a model fitting optimization proce-
dure to try to find the best-fitting time constant, but in our view
that would not be fruitful in practice. The reason is that once
the time constant is set below 250 ms small variations of it can
be traded off against changes in intertrial variability parameters
(e.g., the � parameter of the UGM), producing similar good-
ness of fit. Our approach is not to try to estimate these
parameters precisely but rather to eliminate sections of the
parameter space. The results of the present study as well as
previous studies (Cisek et al. 2009; Thura et al. 2012; Thura
and Cisek 2014) allow us to eliminate models with long time
constants (�250 ms), including perfect integrators such as the
DDM.

Alternative (non-integration-based) models. It is possible
that during the interleaved sessions subjects neither integrate
the motion signal nor combine it with a growing urgency but
simply wait until a large coherent motion appears randomly
during a trial. However, we consider it unlikely that this
strategy—akin to a threshold detection process—was used in
our task. Because our subjects could not predict ahead of time
what the range of motion coherence would be on a given trial,

there was no way for them to set any particular decision
threshold. For example, simply waiting until the motion co-
herence exceeded 15% would have failed to produce any
decision at all on �40% of VMD trials, whereas the number of
“time out” trials we actually observed was �1%. Indeed, any
threshold much higher than 3% would have failed to produce
any decisions on the no-pulse CMD trials. Conversely, setting
the threshold lower would have produced many more errors
than what we observed. Thus, while a detection strategy is
plausible and may be used in some situations, it seems unlikely
to explain our data.

The UGM suggests that low-pass-filtered evidence is
brought to threshold through combination with an independent
urgency signal that controls the decision timing policy. After a
pulse, activity related to evidence increases briefly but then
quickly returns to the baseline “no-pulse” level. Thus a motion
pulse reduces the RT on a given trial only if the decision is
made before the effect of the pulse has leaked away (see Fig.
1, C and D). The UGM thus predicts that the efficacy of a given
motion pulse will depend on its timing with respect to the
decision time. By extension, any systematic change in average
decision times will change which pulse timings reduce RTs.
This is precisely what we observed. Moreover, this explains
not only the general trends we found but also many of the
differences obtained across subjects, with different individuals
susceptible to a different set of motion pulses based on the
average timing of their decisions in a given context (Fig. 6).

An alternative way to implement a buildup of neural activity
is through recurrent feedback between the populations repre-
senting the different options, as in the model of Wang (2002).
While such models differ from the DDM in many important
ways, their recurrent feedback effectively implements a long
time constant of integration. Indeed, simulations by Wang
(2002) show that reduction in the strength of the recurrent
connections causes the system to lose its slow buildup of neural
activity and equilibrate within 200–300 ms after stimulus
presentation. If the recurrent connections are strong enough to
produce continued buildup, then they effectively implement
temporal integration with almost no leak. Consequently, we
conjecture that such models, like the DDM, would also predict
a persistent effect of the 100 ms pulses even in the interleaved
condition, in contrast to our data. However, variations of
attractor models in which the interaction function governing
the recurrent connections becomes steeper over time (see
Standage et al. 2011) can produce dynamics that approximate
a leaky integrator with urgency, and consequently are in
principle able to reproduce our findings (Marcos et al. 2012).
Indeed, such models were the original inspiration for our
experiment, though their detailed implementation is beyond the
scope of the present report.

Noise. Integrator models deal with noise by adding together
successive samples on the assumption that the noise compo-
nents will cancel each other out over time, leaving an estimate
of the underlying signal. On the surface, the UGM may appear
susceptible to noise because it privileges recent information.
However, because the UGM includes a low-pass filter, it is just
as effective as an integrator at dealing with noise. Indeed, for
stimulus components above the filter cutoff frequency, a low-
pass filter and an integrator are approximately equivalent. The
time constant of the filter jointly determines both the frequency
of input fluctuations that will be screened out as noise as well
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as the amount of time required for the decision variable to
respond to a genuine change in the underlying signal. This
issue is relevant for two recent papers that attempted to argue
against the UGM. Winkel et al. (2014) showed that early
motion signals influence RTs and took this as evidence against
the UGM. However, in their implementation of the UGM they
did not include the low-pass filter. If a low-pass filter is added
to the model, it can easily reproduce those data (Carland et al.
2015). Indeed, as shown here (Fig. 9), a low-pass filter with a
short time constant is capable of simulating the effects of early
motion signals, even on RT distributions whose means are
�1,000 ms. Churchland et al. (2011) suggested that the UGM
cannot explain correlations in neural activity, but those authors
also did not include the low-pass filter. If the UGM is imple-
mented fully, including the low-pass filter, then analyses of
high-frequency correlations cannot distinguish between it and
an integrator model, because a low-pass filter and an integrator
are equivalent with respect to reducing the gain of high-
frequency components in their input.

Definition of “evidence” and its ramifications for modeling
the decision process. Important to the present discussion is the
question of what constitutes evidence in a given task. The
DDM is often seen as equivalent to the sequential probability
ratio test (SPRT), a statistical test that optimizes sampling time
to attain a given level of accuracy (Wald 1945). However, the
equivalence between the DDM and the SPRT holds only under
the assumption that each sensory sample is statistically inde-
pendent from preceding ones (Bogacz et al. 2006; Huang and
Rao 2013; Thura et al. 2012). In any constant-evidence task,
repeatedly sampling the stimulus means that each additional
sample is increasingly redundant, providing less and less new
information. Ideally, the decision process should be governed
primarily by novel information. Thura et al. (2012) suggested
that for simple tasks this may be approximated by a low-pass
filter, which quickly adjusts the current estimate of evidence
while ignoring fluctuations whose frequency is above the range
at which the signal of interest is likely to change. This mech-
anism not only ensures that redundant information is ignored
but also enables faster transitions between options under con-
ditions in which evidence can change. A perfect integrator
would be slow to reflect such changes, as it would have to first
“undo” the previously integrated sum for the initial choice
before it could begin to accumulate evidence in favor of the
new choice. In contrast, a UGM could respond to the new
choice after only a brief delay determined by its time constant.

In light of the above, we can consider some of the specific
tasks that have been described in the literature. In some tasks
subjects are being given new sensory information over time—
this includes the “weather prediction” task (Kira et al. 2015;
Yang and Shadlen 2007), the “tokens” task (Cisek et al. 2009;
Thura et al. 2014; Thura and Cisek 2014), the VMD task
(Thura et al. 2012), and the “click-counting” task of Brody and
colleagues (Brunton et al. 2014; Hanks et al. 2015). In such
conditions, information from each new piece of information is
novel and should indeed be accumulated, as supported by both
behavioral and neural data. In contrast, in some tasks the
stimulus is completely static—this includes “brightness dis-
crimination” (Ratcliff 2002; Ratcliff et al. 2007), “dot separa-
tion” (Ratcliff et al. 2003), and “color discrimination” (Coallier
and Kalaska 2014) tasks. In such conditions, each sample of
the visual stimulus is identical to previous samples and pro-

vides no new information, so it should not be integrated. The
random-dot motion discrimination task (Britten et al. 1992) as
well as noisy image categorization tasks (e.g., Tremel and
Wheeler 2015) are a variant of the latter category—they are
tasks in which the underlying signal is static and all that
changes between sequential samples is noise. In such condi-
tions, each sequential sample provides some novel information
but with diminishing returns, because once the noise has been
filtered out there is no more new information to be obtained.
Thus, in such tasks, an accurate estimate of evidence should
stop growing quickly and therefore could not be responsible for
the prolonged buildup of neural activity.

Conclusions. Perfect integration models such as the DDM
have a long history and have become well accepted because
they capture a great deal of data within a simple and intuitively
appealing framework. However, the intuition of accumulating
sensory samples must be supplemented by considering the
evidence actually provided by those samples, which are
increasingly redundant in most tasks. Strictly speaking, only
novel evidence should be accumulated. Furthermore, in
nearly all previous experiments the sensory information
provided to subjects was constant over the course of each
trial. In such conditions it is difficult to distinguish between
different parameter settings, and even sophisticated compar-
isons of model fits (Hawkins et al. 2015a) do not yield
consistent conclusions across tasks, subjects, or modeling
assumptions. In contrast, tasks in which evidence changes
during each trial cause different models to make clearly
divergent predictions that are empirically distinguishable.
Our previous analyses of behavioral and neural data in such
tasks strongly favored the UGM (Cisek et al. 2009; Thura et
al. 2012; Thura and Cisek 2014), but those results could
have been task dependent.

Here we used the same random-dot motion discrimination
task that has been used many times to support the DDM.
However, we designed our experiment to directly test situa-
tions in which the two models make empirically distinguish-
able predictions. We did this both by blocking trials into two
distinct contexts that implicitly motivate either faster or slower
responses and by presenting in each context some identical
trials with brief motion pulses. The finding that early pulses
become less effective as subjects slow down their decisions
(Figs. 4–6) cannot be explained with any version of a perfect
integrator (Fig. 10), regardless of parameter settings, and
points to the necessity of including a strong leak term. The
consequence of the leak term, however, is that with constant
evidence the system will equilibrate quickly and therefore
cannot explain long RTs or the prolonged linear buildup of
neural activity. This suggests the necessity of including an
urgency signal. Neural data supporting the presence of an
urgency signal at the individual cell level have been found
during constant-evidence tasks (Churchland et al. 2008; Hanks
et al. 2014) as well as during changing-evidence tasks (Gluth et
al. 2012; Kira et al. 2015; Thura and Cisek 2014). We conjec-
ture that an urgency signal is a general mechanism for control-
ling speed-accuracy trade-offs in decision making and move-
ment control (Thura et. al. 2014) and that it is responsible for
much of the neural activity buildup observed during decision
making.
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