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Introduction

Animal behavior is fundamentally motivated by the pursuit 
of rewards, including primary reinforcers such as food as 
well as secondary goods such as money. The prospect of 
reward thus governs our decisions about the actions we take 
as well as the effort we invest in those actions. Understanding 
how the brain weighs rewards and efforts and how it adjusts 
behavior accordingly are therefore critical topics of research 
for understanding cognition and action.

However, the value of an individual reward is rarely 
the sole variable of interest. That is because any time an 
animal engages in a given activity—no matter how 
rewarding—it also necessarily foregoes other potential 
activities that may also be rewarding. A large coconut that 
takes 2 minutes to crack may taste good but might not 
ultimately be the best choice in the presence of some 
grapes that would take merely seconds to eat. Thus, the 
real subjective value of a given activity is related to a 
multitude of factors linked not just to the immediate 
rewards and efforts associated with that activity but also 
to the amount of time invested in it and the prospective 
value of any latent alternatives. Therefore, what is ulti-
mately most adaptive is to choose actions that maximize 
one’s global reward rate, relative to the other potential 
courses of action that one could pursue instead.

Reward rate depends on many factors, including the 
subjective payoff (utility) of a potential outcome, the 
probability of obtaining that outcome by performing a 
given action, the cost (e.g., biomechanical effort) of the 
action, as well as the total time invested—which includes 
the deliberation time taken to make the decision, the 
handling time required before the chosen action yields 
the reward, and the intertrial interval (ITI) before one 
can try again (Fig. 1). Optimizing one’s performance in 
any scenario involving the serial collection of rewards 
over time therefore requires that each of these factors be 
taken into account when determining how to think and 
act.

The interrelationships among the multiple variables 
that jointly determine reward rate necessarily give rise 
to a number of fundamental trade-offs. For example, 
while taking more time to deliberate generally improves 
one’s probability of successfully choosing the action 

841553 NROXXX10.1177/1073858419841553The NeuroscientistCarland et al.
review-article2019

1Department of Neuroscience, University of Montreal, Montreal, 
Quebec, Canada

Corresponding Author:
Paul Cisek, Department of Neuroscience, University of Montreal, 
CP6128 Succursale Centreville, Montreal, Quebec, H3C3J7, Canada. 
Email: paul.cisek@gmail.com

The Urge to Decide and Act: Implications 
for Brain Function and Dysfunction

Matthew A. Carland1, David Thura1, and Paul Cisek1

Abstract
Humans and other animals are motivated to act so as to maximize their subjective reward rate. Here, we propose 
that reward rate maximization is accomplished by adjusting a context-dependent “urgency signal,” which influences 
both the commitment to a developing action choice and the vigor with which the ensuing action is performed. We 
review behavioral and neurophysiological data suggesting that urgency is controlled by projections from the basal 
ganglia to cerebral cortical regions, influencing neural activity related to decision making as well as activity related to 
action execution. We also review evidence suggesting that different individuals possess specific policies for adjusting 
their urgency signal to particular contextual variables, such that urgency constitutes an individual trait which jointly 
influences a wide range of behavioral measures commonly related to the overall quality and hastiness of one’s decisions 
and actions. Consequently, we argue that a central mechanism for reward rate maximization provides a potential link 
between personality traits such as impulsivity, as well as some of the motivation-related symptomology of clinical 
disorders such as depression and Parkinson’s disease.

Keywords
reward rate, decision making, urgency, vigor, motivation, basal ganglia, personality, impulsivity, depression, Parkinson’s 
disease

https://us.sagepub.com/en-us/journals-permissions
https://journals.sagepub.com/home/nro
mailto:paul.cisek@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1073858419841553&domain=pdf&date_stamp=2019-05-08


492 The Neuroscientist 25(5) 

that yields a reward, doing so also delays that reward, as 
well as reduces the amount of time that one can poten-
tially spend pursuing other possibilities. By extension, 
costs in any one dimension—such as increased delibera-
tion time—may be compensated for in another, for 
example, by increasing the speed of the movements 
used to implement the outcome of that deliberation so 
that the next opportunity can be encountered more 
quickly.

Because of the inherent complexity of these interrela-
tionships, even relatively subtle differences among any 
single task factor can significantly affect how one should 
best spend their time, and there is therefore no single deci-
sion policy that is guaranteed to maximize reward rate 
across all contexts. Instead, many diverse cognitive and 
behavioral variables must be flexibly coordinated within 
each new setting in order to exploit these interdependencies 
in an optimal manner. Consequently, nearly all decision 
scenarios present decision makers with a fundamental 
speed-accuracy trade-off (SAT) that constrains how they 
adjust their behavior to a given environmental context. 
Indeed, a wide variety of studies have shown that both ani-
mals and humans are highly sensitive to the context-depen-
dent trade-offs between hasty versus conservative behavior 
(Heitz 2014) and will often flexibly sacrifice one for the 
other when doing so can improve their overall rate of 
reward (Balci and others 2011; Bogacz and others 2010a). 
However, the precise neural mechanisms by which this 

context-dependent behavioral flexibility is achieved remain 
largely unknown.

In what follows, we review theoretical arguments, as 
well as behavioral and neural data, suggesting that an 
“urgency” signal provides the central underlying mecha-
nism by which multiple aspects of behavior are jointly 
coordinated in the service of maximizing reward rate. We 
first present the theoretical motivation for positing the 
existence of the urgency signal, and review data suggest-
ing that it is controlled by projections from the basal gan-
glia to a wide set of cognitive and sensorimotor regions of 
the cerebral cortex. This neural signal grows over the 
course of deliberation, continually “pushing” decision-
related neural activity toward the threshold required for 
choice commitment as time elapses. Importantly, the rate 
at which this signal grows is strongly modulated by task 
context, and directly influences multiple behavioral 
parameters that are each intrinsically related to reward 
rate maximization, such as the amount of time required 
for committing to an action choice and how quickly 
(“vigorously”) that action is performed.

Next, we review data suggesting that both animal and 
human decision makers exhibit considerable variability 
in their “baseline” level of urgency, and thus that urgency 
may be usefully conceptualized as an individual “trait” 
(Berret and others 2018; Reppert and others 2018). For 
example, consider an identical task performed by two 
individuals who differ solely in their relative sensitivity 

Figure 1. Schematic view of how multiple subjective factors (blue text) and situational variables (equation, black text) jointly 
influence an individual’s estimate of reward rate. ITI = intertrial interval. We propose that the resulting estimate of reward rate 
is used to control an “urgency signal,” whose setting produces systematic shifts in a variety of “downstream” behaviors (green 
text). The joint coordination of multiple behavioral dimensions by a single underlying mechanism thereby provides an efficient 
mechanism for maximizing reward rate across a broad range of settings.
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to the value of rewards (Fig. 1, blue text). This would 
yield two different subjective estimates of reward rate, 
culminating in a suite of behavioral differences across 
multiple measures commonly related to the overall “hast-
iness” of their decisions and motor behavior (Fig. 1, 
green text). By acting as a common mechanistic pathway 
linking various (“lower-level”) aspects of reward pro-
cessing and motivation to overt behavior, we argue that 
individual variability in urgency may potentially provide 
a link between decision making and the hallmark cogni-
tive and behavioral manifestations of broader personality 
traits, such as impulsivity.

Finally, we conclude by reviewing a range of clinical 
findings that suggest the potential of an urgency mecha-
nism to provide a unified account of the etiology and 
symptomology of a number of clinical disorders, focus-
ing in particular on depression and Parkinson’s disease. 
In this view, pathophysiological alterations within a vari-
ety of neural mechanisms centrally related to reward pro-
cessing may lead to chronically elevated or diminished 
levels of urgency, thereby contributing to some of the 
defining symptoms of these disorders. Overall, therefore, 
we aim to illustrate how a highly general and evolution-
arily conserved mechanism—one that is at the core of 
animals’ ability to adapt their behavior to the reward con-
tingencies across many different behavioral contexts—
may have important ramifications for understanding 
individual differences in human personality, and may 
even constitute a novel “trans-diagnostic” mechanism for 
understanding multiple heterogeneous forms of clinical 
pathophysiology.

Reward Rate and Urgency

We begin with a simple demonstration of why control of 
urgency is useful for maximizing reward rates. Consider 
a scenario in which an agent is making a series of simple 
decisions between mutually exclusive actions on the 
basis of information that is gradually collected over time, 
and in which the agent is free to decide how much time to 
allocate toward information gathering before committing 
to a choice. After the choice is made, there will be a cer-
tain probability of successfully receiving a reward, the 
likelihood of which tends to be higher if more time was 
spent collecting information about which choice is cor-
rect. However, each choice also necessarily incurs 
costs—including the effort of movement as well as the 
total time invested in deliberation, handling, and ITI—
which at least partially offset the gains in reward rate 
available from investing additional decision time.

In general, the local reward rate for a given action can 
be mathematically expressed using the equation shown in 
Figure 1, which is plotted in Figure 2A (red curves) for 
trials of different difficulty. Because prolonging delibera-
tion improves accuracy (Fig. 2A, green curves)—and 

thus increases the probability of reward—the reward rate 
(red curves) initially increases as a function of time. 
However, as the marginal improvements in accuracy 
level off, the investment of additional time begins to out-
weigh the value of further deliberation, and the reward 
rate function begins to decrease. Thus, during any given 
decision, there is a moment in time at which reward rate 
is maximal (purple dots), which thereby defines the opti-
mal time at which to commit to an action.

Interestingly, the mathematical solution for the opti-
mal time of commitment has the same mathematical form 
as Charnov’s marginal value theorem (Charnov 1976), a 
law in foraging theory that describes how long animals 
tend to harvest a given “resource patch” in their environ-
ment before leaving to find another. In a foraging sce-
nario, the quantity being maximized is the global harvest 
rate from patches that each yield diminishing returns over 
time, whereas what is maximized here is the reward rate 
from trials in which the value of further deliberation 
yields diminishing returns over time. Nonetheless, in 
both cases there are diminishing returns with longer dura-
tion (of either foraging or deliberation)—and one there-
fore obtains the same mathematical form of the solution 
for the optimum duration. A wide variety of studies have 
shown that animals ranging from insects to humans gen-
erally follow the marginal value theorem (Hayden and 
others 2011; Stephens and Krebs 1986; Yoon and others 
2018), though of course their behavior may also be influ-
enced by other factors such as exploration, fatigue, sud-
den threats, and so on.

Thura and others (2012) have shown that under a wide 
range of conditions there is a simple policy for finding the 
ideal moment in time when reward rate is maximal. 
Stated briefly, one needs to commit at the moment when 
one’s estimate of the probability of success reaches a 
threshold (“accuracy criterion”) that decreases over time 
(Fig. 2A, purple line). This follows directly from the 
equation in Figure 1, but it also expresses a very intuitive 
heuristic: If you’re confident right away, go ahead and 
act. If you’re not, then think a little more and/or wait to 
see if the world provides you with more information. But 
as time passes, lower your criterion of accuracy so that 
you don’t wait forever.

How might the brain implement such a decision-mak-
ing policy at the neural level? One possible mechanism is 
to estimate the evidence in favor of a given choice and 
compare it with a decreasing threshold (Fig. 2B). Another 
is to combine the evidence with a signal that rises over 
time and compare the result to a fixed threshold (Cisek 
and others 2009), as shown in Figure 2C. As reviewed 
below, neural data currently favors the latter mechanism, 
and suggests the existence in the brain of a context-
dependent “urgency” signal that grows over time, thereby 
continually “pushing” neural activity toward a fixed fir-
ing rate threshold for committing to an action.
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Neural Mechanisms of Decision 
Making

Over the past two decades, neurophysiological investiga-
tions in non-human primates have led to the hypothesis that 
when a decision involves the selection of an action, it is 
computed in the same circuits that guide the preparation and 
execution of that action (for reviews, see Cisek and Kalaska 
2010; Gold and Shadlen 2007). Indeed, regions of the brain 
traditionally labelled as “sensorimotor areas” possess neu-
rons whose action-related activity often covaries with 

non-motor decision factors such as expected utility, reward 
probability, elapsed time, and many other variables. Based 
on such observations, it has been proposed that during  
interactive behavior, sensorimotor areas of the brain simul-
taneously specify the actions currently available in the envi-
ronment and select between them through a dynamic, 
distributed competition that is continuously influenced by a 
variety of biasing inputs. Such inputs may include salience 
(Foley and others 2014), expected utility (Platt and Glimcher 
1999), reward probability (Pastor-Bernier and Cisek 2011; 
Yang and Shadlen 2007), or motivational significance 

Figure 2. (A) Theoretical motivation for the use of an urgency signal in decision making. The plot at the top shows the 
probability of being correct (solid green lines) as a function of deliberation time for three trials that differ in difficulty (strength of 
evidence). The plot at the bottom shows the reward rate (red lines) obtained for those trials, again as a function of deliberation 
time (here calculated assuming that handling time + ITI = 3 seconds (ITI = intertrial interval), and that the cost of the 
movement used to report the decision is proportional to 30% of the value of the reward at stake). Purple dots (at the peak of 
each reward rate function) indicate the mathematically optimal moment at which to commit. Note that these moments define 
a decreasing criterion (dashed purple line) in the accuracy plot above. The precise rate at which this ideal accuracy criterion 
decreases is also dependent on a variety of other factors, such as the cost of the movement (see Fig. 1), and would therefore 
decrease more slowly under conditions in which the movement used to report the decision outcome is more costly (50% of 
reward; light purple). (B) Optimal decision-making can be implemented by calculating evidence (green) and comparing it to a 
decreasing threshold (purple). (C) Alternatively, evidence (green) could be combined with a growing “urgency” signal (red) to 
produce neural activity that grows over time (orange) until it reaches a fixed commitment threshold.
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(Leathers and Olson 2012)—in short, any factor relevant for 
resolving the competition between potential actions (Cisek 
2007; Cisek and Pastor-Bernier 2014; Shadlen and others 
2008).

Interestingly, many studies have shown that during 
the process of deliberation, neural activity in these sen-
sorimotor structures gradually builds up at a rate related 
to the strength of sensory evidence, reaching a final fir-
ing rate at the time of commitment that is approximately 
the same across trials (Gold and Shadlen 2007; Hanes 
and Schall 1996; but see Heitz and Schall 2012). Such 
neural activity patterns have typically been interpreted 
as the temporal integration of sensory evidence to a 
fixed accuracy threshold, in line with a class of theories 
called bounded integrator or drift-diffusion models 
(Gold and Shadlen 2007; Ratcliff 1978). However, an 
alternative explanation is that such neural build-up is 
due to the combination of sensory evidence with an 
“urgency” signal that grows over the course of delibera-
tion (Fig. 2C) (Cisek and others 2009; Ditterich 2006). 
Importantly, such a mechanism would not only explain 
the timing of decisions but would also reduce the 

effective amount of evidence required for commitment 
as time progresses, thereby simultaneously implement-
ing the decreasing accuracy criterion that is necessary 
for optimal behavior (Drugowitsch and others 2012; 
Thura and others 2012).

Whether the build-up of neural activity is caused by 
evidence integration or urgency is currently under debate 
(see Box 1). It is difficult to discriminate these explana-
tions on the basis of most existing data; and because 
bounded integration models are so well-known in the 
field, most studies still tend to interpret neural activity 
build-up as evidence integration. However, studies spe-
cifically designed to discriminate between these models 
favor the existence of an urgency mechanism and suggest 
that it may be responsible for most of the build-up 
observed during decision making (see references cited in 
Box 1). If that is the case, then it is important to consider 
what the conceptual and practical ramifications of the 
existence of such a signal might be. First, however, it is 
important to ask whether we can identify such a signal in 
the brain and characterize how it influences the neural 
mechanisms of decisions and actions.

Box 1.

A classic model of perceptual decision making—the drift-diffusion model (DDM)—posits that during deliberation the brain continu-
ously accumulates sensory evidence until the total reaches a fixed threshold, whose setting acts as an accuracy criterion (Ratcliff 
1978). Based on this popular framework, the build-up of neural activity reported during many decision-making studies is commonly 
interpreted as the neural correlate of the evidence accumulation process (Forstmann and others 2016; Gold and Shadlen 2007). 
However, several observations cast doubt upon this interpretation. For example, numerous studies have demonstrated that the 
time window used by the brain to integrate incoming evidence is 
substantially shorter than the duration of decisions (Cook and 
Maunsell 2002; Ghose 2006; Ludwig and others 2005; Luna and oth-
ers 2005; Stanford and others 2010; Uchida and others 2006; Yang 
and others 2008), and shorter than the duration of build-up activity. 
Furthermore, build-up activity is observed even when no genuine 
decision-related evidence is present (Churchland and others 2008), 
suggesting that this activity may instead be related simply to the 
passage of time itself (Ditterich 2006; Janssen and Shadlen 2005; 
Thura and Cisek 2014). Conversely, build-up activity is significantly 
weaker—or even entirely absent—during decision-making tasks in 
which the time of response is externally controlled (e.g., by a “GO” 
cue; see Roitman and Shadlen 2002; Shadlen and Newsome 2001), 
or before information is provided about the action that must be 
performed (Bennur and Gold 2011). In short, the presence or 
absence of build-up activity appears to be less related to the pro-
cessing of sensory information and more related to motor-prepara-
tory processes, especially when animals are free to trade-off speed 
versus accuracy to maximize their reward rate.

Based on these observations, we have suggested two modifica-
tions to the classic DDM (Cisek and others 2009; Thura and others 2012). First, we propose that integration of sensory evidence 
is fast, in line with the data cited above, with Bayesian optimality, and with the ecological necessity of remaining sensitive to sud-
den changes in the world. Second, we propose that the build-up of neural activity is largely caused by a growing urgency, which 
as noted above is important for maximizing reward rates (Drugowitsch and others 2012; Thura and others 2012). The result is 
called the urgency-gating model (UGM).

The UGM and DDM are not completely different models. Both involve integration of sensory information (DDM with a long 
time constant, UGM with a short one) and both compare the result to an accuracy criterion (fixed in the DDM, decreasing in 
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the UGM). Therefore, they can be seen as two corners of a two-dimensional space of models, whose axes are defined by the 
length of the time constant and the slope of the urgency signal (see figure). Other models—such as the leaky competing accumula-
tor (LCA) (Usher and McClelland 2001)—also lie within that space, and the challenge for researchers is to devise experiments 
that help to narrow down which part of that space is most compatible with the data.

Importantly, almost all the studies used to support the DDM have used behavioral tasks in which the information contained in 
the stimulus is constant over time in each trial. Under such conditions, the DDM and UGM make nearly identical predictions 
regarding the patterns of neural activity build-up and the resulting behavior. In other words, data from constant-evidence tasks 
(blue) is compatible with many models in this space and does not exclusively support any one type of model. For this reason, 
attempts to determine which model provides the best fit to data from such tasks (Chandrasekaran and others 2017; Hawkins and 
others 2015a; Hawkins and others 2015b; Murphy and others 2016; Palestro and others 2018) have not provided a consistent 
answer, with results sometimes favoring one model and sometimes the other, and sometimes yielding different answers even for 
individual subjects in an identical task. In contrast, distinguishing the models is much easier using data from tasks in which the 
information contained in the stimulus changes over the course of an individual trial, because in such conditions, the models make 
very different predictions regarding how the decision process is influenced by a given sample of evidence at a given moment. These 
studies have consistently favored the assumptions of the UGM (Carland and others 2016; Cisek and others 2009; Gluth and others 
2012; Malhotra and others 2017; Thura and others 2012). In particular, one recent study from our lab (Carland and others 2016) 
presented human subjects with a version of the classic random-dot motion discrimination task often used to support the DDM, 
but with a crucial difference: we inserted brief and subtle “pulses” of motion information at different times during the trial and 
tested what effect these pulses had on behavior. We found that a given motion pulse influenced behavior only if it fell within a rela-
tively short temporal window that depended on a given subject’s tendency to respond quickly or slowly in a given condition. This 
is exactly what was predicted by the UGM and is incompatible with any version of the DDM—regardless of parameter settings—
because it directly contradicts the assumption that all sensory information is integrated until the threshold is reached.

Consequently, while we recognize the important role that the DDM has played for many years in advancing our understand-
ing of decision making, we believe that some of its original assumptions must be modified in light of recent neural and behavioral 
data. This is controversial, and we refer interested readers to our earlier papers in which we provide a more complete account 
of why we favor the UGM (Carland and others 2015; Carland and others 2016; Thura and others 2012). In the present article, 
we focus instead on exploring what potential additional insights the concept of an urgency signal may offer into neural mecha-
nisms and behavioral phenomena in both health and disease.

To directly investigate these questions at the neural 
level, we trained rhesus monkeys in a probabilistic guess-
ing paradigm we call the “tokens task” (Fig. 3A), which 
we previously used with human subjects (Cisek and oth-
ers 2009). In each trial, 15 small circular tokens are dis-
tributed one by one, every 200 ms, from the central circle 
to one of two potential lateral targets, and subjects have to 
complete a reaching arm movement to select the target 
they believe will contain the most tokens by the end of the 
trial. Importantly, this decision can be made at any time, 
and once a target is selected the remaining token move-
ments shorten to either 150 ms (in “slow” blocks of trials) 
or 50 ms (in “fast” blocks). Thus, the subject is faced with 
a trade-off between improving their reward rate either by 
emphasizing accuracy (i.e., increasing their likelihood of 
success by taking more time to collect information on 
individual trials) or emphasizing speed (i.e., by guessing 
more quickly to increase their total number of opportuni-
ties for reward). Importantly, the best setting of this trade-
off differs between the blocks, as the significantly reduced 
ITI in the “fast” blocks means that the subject stands to 
gain more benefit from making faster, less-accurate deci-
sions, thereby shifting the balance in favor of a hastier 
decision policy.

As predicted, we found that our subjects effectively 
formed their decisions on the basis of progressively less 

evidence as time elapsed in a given trial. Moreover, we 
also observed that the way in which their decision criteria 
decreased over time differed significantly between the 
“fast” and “slow” blocks, indicating that the subjects 
were indeed sensitive to the context-specific trade-offs 
afforded by each task condition. Finally, we showed that 
the monkeys’ reaction time and accuracy distributions for 
each block type could be modeled using a simple linear 
urgency signal with just two parameters (slope and inter-
cept; Fig. 3B). Together, these findings are consistent 
with the proposal that decision policies are governed by 
an urgency signal which continually “pushes” the sub-
jects to make decisions as time elapses, and that this sig-
nal is higher when hasty behavior becomes increasingly 
advantageous (Thura and others 2014).

Interestingly, our studies also revealed an unexpected 
interaction between decision urgency and movement 
kinematics: in blocks of trials favoring hasty decisions, 
the monkeys’ reaching movements were faster than simi-
lar movements performed during blocks of trials favoring 
slower, more accurate decisions (Fig. 3C). This block-
dependent effect of urgency on movement execution did 
not appear to be effector-specific, as it also affected to 
some extent the speed of saccadic eye movements (despite 
the fact that oculomotor behavior was not constrained in 
the task and did not affect reward rates). Furthermore, an 
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effect of urgency was also evident within task blocks: ear-
lier decisions (generally made on the basis of strong sen-
sory evidence combined with relatively low urgency) 
were followed by longer, slower movements; whereas 
later decisions (relying on comparatively weaker sensory 
evidence in combination with a higher level of urgency) 
were followed by shorter and faster arm movements. 
These findings suggest not only that urgency controls the 
timing of decisions, but also that the state of the urgency 
signal at the time of a decision can influence the speed of 
the ensuing motor commands.

To test the model at the neural level, we recorded the 
spiking activity of individual neurons in the dorsal 
 premotor (PMd) and primary motor cortex (M1) (Thura 
and Cisek 2014; 2016), two key nodes in the network 

controlling the selection and execution of reaching move-
ments. In both regions, neurons active during the delib-
eration process exhibited activity patterns that clearly 
reflected how the sensory evidence provided by the 
tokens unfolded over time in different types of trials (Fig. 
4A, left). Furthermore, in addition to the sensory evi-
dence, these same PMd and M1 neurons were also modu-
lated by a signal that grew over time in exactly the 
block-dependent manner as the predicted urgency signal 
(Fig. 4B; compare with Fig. 3B). Finally, about 280 ms 
before movement onset, these same neurons reached 
approximately the same fixed firing-rate threshold 
regardless of evidence or urgency (Fig. 4A, right), consis-
tent with the mechanism depicted schematically in Figure 
2C. In summary, deliberation in this task appeared to 

Figure 3. (A) The “tokens” task. During each trial, 15 tokens jump sequentially from the center to one of the outer targets 
every 200 ms. The monkey’s task is to move the cursor (cross) to the target that he believes will ultimately receive the majority 
of tokens (green circle) and is free to make this decision at any time during a trial. After his choice is made, the speed at which 
the remaining tokens are distributed into the targets is increased either to 50 ms (in “fast” blocks) or 150 ms (in “slow” blocks). 
Because the benefits of early decisions are significantly greater in “fast” blocks, each block type encourages different speed-
accuracy trade-off (SAT) policies, causing the monkeys to respond with relatively hastier or slower decisions in each condition. 
(B) The behavior of Monkey S in the tokens task. The left panel shows the quantity of sensory evidence (computed as the sum 
of log-likelihood ratios), available to the monkey at the time of commitment as a function of decision duration and SAT context, 
that is, trials in which slow and accurate decisions are favored (blue) or trials encouraging fast and risky decisions (red). The 
right panel shows the estimated shapes of the urgency functions in the two SAT conditions computed by fitting the urgency-
gating model to the monkey’s behavior (dashed curves in the left panel) using different values of urgency slope and intercept. 
(C) Monkey S’s motor behavior in the tokens task. The left panel shows the peak velocity of reaching movements performed by 
the monkey to report his choices as a function of decision duration and SAT condition. The right panel shows the peak velocity 
of eye movements performed by the monkey as a function of time during deliberation and SAT condition. Reproduced with 
permission from Thura and others (2014).
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involve the combination of evidence and urgency until a 
fixed firing rate was reached, constituting commitment to 
the developing choice.

Another important observation concerns the activity 
of other neurons in PMd and M1, which are not active 
during deliberation but are strongly implicated in move-
ment execution. We found that their activity at the time of 
commitment strongly depended on the current level of 
the urgency signal at that time (Fig. 4C; compare with 
Fig. 3B). A natural explanation is that these “movement-
related” neurons are recipients of the same context-
dependent urgency signal that drives the animals to make 

their decision. If these neurons influence muscular con-
traction, they will therefore provide a mechanistic link 
between the urgency with which choices are made and 
the speed (or “vigor”) of the chosen actions.

Although initially surprising, a link between delibera-
tion and movement kinematics makes perfect sense in the 
context of reward rate maximization (Fig. 1), as reward 
rate is influenced not only by the time taken to decide but 
also by the time spent executing the movement and 
obtaining the reward (Haith and others 2012; Shadmehr 
and others 2010; Summerside and others 2018). Thus, the 
correlations between a monkey’s level of urgency at the 

Figure 4. (A) The top-left panel shows the average activity of spatially tuned neurons recorded in dorsal premotor (PMd) 
during “easy” (blue), “ambiguous” (green), and “misleading” (red) trials, in which the monkey correctly chose the cells’ preferred 
target (solid lines) or the opposite target (dashed lines). Below, we show the average activity during those same trials of spatially 
tuned neurons recorded in primary motor cortex (M1), external globus pallidus (GPe), and internal globus pallidus (GPi). Activity 
is aligned on the first token jump and truncated 280 ms before movement onset (squares and diamonds) to avoid averaging 
artifacts. The inset shows the evolution of sensory evidence provided to animals by successive token jumps in those same trials. 
Right panels: Same as left but aligned on movement onset. Circles and diamonds mark our estimate of the monkey’s time of 
commitment. Modified with permission from Thura and Cisek (2017). (B) The left panel shows the evolution of the average 
activity of decision-related neurons in PMd, calculated at moments in time when the evidence is equal for each target, plotted 
as a function of time in either the slow (blue) or the fast (red) blocks. Right panel: Same as left for a population of decision-
related neurons in area M1. (C) Average activity, at the time of commitment, of PMd neurons involved in movement execution 
during the tokens task. Data are sorted according to the duration of decisions preceding the reach that reports them, either 
the shortest (dark colors) or the longest (light colors), and as a function of the speed-accuracy trade-off (SAT) condition, the 
slow (blue) and the fast (red) SAT regime. B and C reproduced with permission from Thura and Cisek (2016). (D) The left panel 
shows the average activity (with 95% confidence intervals) of 19 “build-up” GPe cells aligned on the first token jump during 
the fast (red) and slow blocks (blue). The right panel shows the average activity of 11 GPi “decreasing” cells in the same SAT 
conditions. Activity is truncated before decision commitment (circles). Modified with permission from Thura and Cisek (2017).



Carland et al. 499

time of their decision and the vigor with which actions 
are performed suggests that urgency exerts a compensa-
tory influence on handling time, such that the cost of 
investing additional time in deliberation will be partially 
offset by a decrease in the duration of the movements 
used to report the choice. This link also provides a clue to 
the neural origins of the urgency signal, and hints to how 
it may be related to a wide variety of behavioral phenom-
ena in both health and disease.

The Origin of Urgency in the Brain

If an urgency signal is combined with evidence-related 
activity of sensorimotor areas, what might be the source 
of this signal? Given the observations described above, 
an urgency signal would be expected to originate from a 
region that projects to a wide range of cortical areas to 
influence both decision-making and action execution. In 
this respect, the basal ganglia (BG) provide a natural can-
didate. At the macroarchitectural level, this set of subcor-
tical nuclei form segregated neuroanatomical loops with 
nearly every part of the brain—including cortical senso-
rimotor regions, frontal “cognitive” regions, and subcor-
tical limbic regions associated with emotion, to name but 
a few (Alexander and others 1990)—thus providing the 
BG with a broad connective territory appropriate for reg-
ulating many diverse forms of externally directed behav-
ior. Relatedly, extensive study of the microarchitectural 
(i.e., circuit-level) properties of these loops has revealed 
a canonical scheme of cortical-subcortical connectivity, 
which has been interpreted as suggesting a common, 
domain-general functional purpose for these loops across 
the BG’s broad and functionally heterogeneous set of 
afferent targets (Swanson 2000).

Furthermore, the basal ganglia have long been func-
tionally associated with the regulation of motivated 
behavior and reinforcement learning for maximizing 
reward (Frank 2011; Graybiel 2005), and are strongly 
implicated in both the control of movement vigor 
(Dudman and Krakauer 2016; Turner and Anderson 1997; 
Turner and Desmurget 2010; Yttri and Dudman 2016) 
and the general ability to motivate the expenditure of 
energy in the pursuit of potential rewards (Mazzoni and 
others 2007; Niv and others 2007; Pessiglione and others 
2007). Multiple lines of neurophysiological evidence 
suggest that effort expenditure and movement vigor are 
largely under the control of activity within a variety of 
BG structures, including the striatum, substantia nigra, 
ventral pallidum, and the globus pallidus (Pessiglione 
and others 2007; Reppert and others 2018). Neural activ-
ity in the BG is higher before movements that are more 
highly rewarded, with activity in multiple regions effec-
tively scaling with reward magnitude and probability 
(Kawagoe and others 1998; Nakamura and Ding 2017), 

and transient stimulation or inhibition of these regions 
within a temporal window of up to ~300 ms prior to a 
movement affects the vigor with which the ensuing 
movement is executed (da Silva and others 2018; Yttri & 
Dudman 2016). Conversely, lesions in BG structures 
commonly result in an inability to modulate movement 
vigor in response to changes in reward (Tachibana and 
Hikosaka 2012). Therefore, if a unified mechanism in the 
brain is responsible for regulating both decision timing 
and movement vigor in the service of maximizing reward 
rate, the structures of the BG would appear to be prime 
candidates.

Guided by these lines of evidence, we recorded the 
activity of neurons in a major output nucleus of the basal 
ganglia, the globus pallidus (GP)—including both the 
external (GPe) and internal (GPi) segments—while mon-
keys performed the tokens task (Thura and Cisek 2017). 
In contrast to the activity patterns we observed in PMd 
and M1, the evolution of changing evidence was only 
weakly reflected in the activity of GPe neurons, and was 
virtually absent in GPi, the final output structure (Fig. 
4A, bottom plots). Instead, many neurons in both GPe 
and GPi exhibited time-dependent activities, either build-
ing up or decreasing as a function of time during delibera-
tion (Fig. 4D). Crucially, these time-dependent activity 
levels were also strongly modulated by the SAT condition 
in which the task was being performed: “build-up” neu-
rons often were more active during fast blocks than in 
slow blocks, whereas “decreasing” cells showed the 
opposite pattern, as if each cell population was directly or 
inversely correlated with urgency. BG output activity 
thus appears to encode an urgency signal as well as its 
adjustment across different speed-accuracy regimes.

Taken together, our data suggest that unlike the corti-
cal networks involved in arbitrating between decision 
options, the primary output of the BG is not involved in 
deliberation about which target is chosen per se, but 
instead provides a signal that selectively invigorates a 
given behavior (Cisek and Thura 2018), motivating the 
expenditure of effort toward obtaining reward. For some 
tasks, such as weight lifting, this signal takes the form of 
a tonic arousal of the cortical regions controlling the rel-
evant muscles. For tasks in which there exists a direct 
trade-off between speed and accuracy, this signal takes on 
the form of a context-dependent ramping activity that 
influences both the urgency to decide and the vigor of 
action, because that results in maximizing reward rates. 
This is in agreement with previous studies that have 
implicated the basal ganglia in the control of the SAT 
(Bogacz and others 2010b; Forstmann and others 2010), 
as well as with similar findings showing SAT-related 
modulations of the baseline and gain of neural processing 
in oculomotor regions during decisions between saccade 
targets (Hanks and others 2014; Heitz and Schall 2012). 
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Furthermore, human neuroimaging studies have reported 
that emphasizing response speed increases baseline activ-
ity in the striatum, the presupplemental motor area, as 
well as premotor and parietal regions (Bogacz and others 
2010b; Forstmann and others 2010; Ivanoff and others 
2008; van Veen and others 2008). Thus, a consistent 
theme emerging from all studies of the SAT is that it 
involves modulating the local neural dynamics of a vari-
ety of cortical and subcortical decision-making networks 
as a function of the context in which a given task is per-
formed (Standage and others 2014).

A Neuroanatomical Circuit for 
Deliberation and Commitment

To summarize, recent data support a centralized decision 
mechanism that jointly regulates neural activity across 
multiple interconnected brain structures, each of which 
encode specific aspects of the choice process (Fig. 5). 

During deliberation, cortical activity reflects a dynamic, 
biased competition between candidate actions, which is 
gradually amplified by an urgency signal from the BG 
that effectively determines the amount of evidence 
needed before the animal commits to the currently 
favored action target. Once the emerging cortical bias 
grows strong enough to engage directionally tuned activ-
ity in the GPi, a cascade of positive feedback initiates 
commitment to the action choice—the vigor of which is 
determined by the level of urgency at the time of the deci-
sion. The urgency signal thus serves as a central control 
mechanism for the SAT adjustment as a combined func-
tion of the multiple opportunities and constraints of a 
given task, thereby allowing animals to flexibly adjust 
multiple dimensions of cognition and behavior for the 
ultimate purpose of maximizing their reward rate across a 
wide variety of contexts (Thura and Cisek 2017).

This mechanism is well supported by neurophysiolog-
ical data from monkeys making simple decisions about 
actions and is compatible with behavioral data from many 
studies in human subjects (see Box 1)—but it may have 
still broader implications. In particular, if urgency is the 
mechanism that ties together the timing of decisions and 
movements for the general goal of maximizing reward 
rates through projections from the basal ganglia to senso-
rimotor regions, then it might also influence many other 
aspects of motivated behavior through projections to 
other cortical regions, including prefrontal and limbic 
areas (Fig. 5, red and orange arrows, respectively). If so, 
then its regulation could influence a wide range of behav-
iors, perhaps thereby accounting for interindividual dif-
ferences in a variety of specific traits, and possibly even 
some symptoms of neurological disorders.

Trait-Level Differences in Urgency

While the motivation to maximize reward rate is univer-
sal among animals, the fact that decision makers do not 
all behave identically in a given setting implies that the 
neural mechanisms involved are subject to some degree 
of variability across individuals. Therefore, an important 
question to consider is whether individuals exhibit a cer-
tain “baseline” level of urgency that remains stable over 
time and across contexts, and which distinguishes their 
performance from that of other decision makers under 
similar conditions. If so, then an individual’s unique set-
ting of this urgency mechanism may be sufficient to 
account for the resulting suite of behavioral differences 
that characterize an individual’s typical decision-making 
performance.

Some direct evidence in support of a “trait-like” view 
of urgency is furnished by our own work with both human 
(Carland and others 2016) and non-human (Thura and 
others 2014) subjects. Behavioral data from these studies 

Figure 5. A proposed neural circuit mechanism for making 
decisions between actions. During deliberation, cortical 
activity (dorsal premotor [PMd] and primary motor cortex 
[M1]) reflects a dynamic, biased competition between 
candidate actions, which is gradually amplified by an urgency 
signal (red) from the basal ganglia’s (BG’s) principal output 
structures (external and internal globus pallidus [GPe and 
GPi, respectively]). The urgency determines the amount of 
evidence needed before the animal commits to his reach 
choice, while simultaneously controlling decision-related 
speed-accuracy trade-off adjustments as a function of a task’s 
opportunities and constraints. Although this mechanism has 
been directly studied primarily in the context of decisions 
about perceptions and actions, the broad regional anatomical 
connectivity and circuit-level stereotypy of cortico-basal 
ganglia loops suggests the possibility that the influence of 
urgency may extend to other (e.g., non-motor) domains 
of cortical function, including “cognitive” domains such as 
executive function. In this view, a hypothetical “cognitive 
urgency” signal (orange)—possibly provided by the associative 
and limbic territories of the BG—could regulate the decision 
processes determined in prefrontal areas of the brain.
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reveals that when a subject is first presented with an unfa-
miliar decision-making task, the initial learning phase is 
followed by convergence toward a stable and idiosyn-
cratic decision policy that governs multiple aspects of 
how that individual decides and acts. Consequently, each 
decision-maker exhibits a suite of consistent differences 
across multiple ensuing behavioral measures, including 
their gross response time distributions, their accuracy 
rates within different task conditions, their temporal sen-
sitivity to incoming sensory evidence, and their move-
ment kinematics (Fig. 1, green text). Importantly, we 
have also shown that the variance across these measures 
can be jointly accounted for by a model in which each 
subject is assigned a unique set of urgency parameters, 
the settings of which are alone sufficient to reproduce 
multiple “downstream” aspects of their behavior from a 
single set of parametric changes (Fig. 6A and B). 
Furthermore, the consistency of our subjects’ perfor-
mance over spans of time up to several months in length 

speaks to the considerable temporal stability of this 
“urgency” trait (i.e., demonstrating high “test-retest 
reliability”).

Although relatively few other decision-making studies 
have explicitly considered urgency-like mechanisms 
when accounting for behavioral data, a number of related 
findings nonetheless provide additional indirect support 
for the trait-like nature of urgency. For example, subjects 
who tend to move with greater vigor also exhibit gener-
ally faster response times (Jaśkowski and others 2000; 
Reppert and others 2018), which is precisely what would 
be expected if these behavioral measures are each the 
result of an individual’s characteristic level of urgency 
(Fig. 6B). Conversely, after any given amount of delib-
eration time, an individual with a higher “baseline” level 
of urgency would be predicted to issue faster movements 
relative to an individual whose urgency is lower (Fig. 
6C). Indeed, a considerable number of studies have 
reported that when controlling for decision times, some 

Figure 6. (A) As time passes and urgency grows, the amount of evidence needed to reach the decision threshold decreases. 
This occurs at a faster rate for a “hasty” individual (left) than for a more “conservative” individual (right), thereby accounting 
for inter-subject differences in response time distributions under otherwise-identical task conditions. (B) When free to respond 
at any time, an individual with low urgency will take longer to decide than a hasty individual, even when the evidence being 
presented (green arrows) is identical. (C) If deliberation time is externally controlled, the influence of urgency on motor 
execution means that the movements of an individual with relatively lower urgency will be performed with a lower level of vigor 
than those performed by an individual with higher urgency.



502 The Neuroscientist 25(5) 

individuals consistently perform movements up to two to 
four times faster than others (Berret and others 2018; 
Reppert and others 2015; Rigas and others 2016), and 
that these characteristic differences in vigor remain stable 
when tested at intervals of up to 11 months apart (Bargary 
and others 2017; Choi and others 2014; Friedman and 
others 2017).

In light of our previous results suggesting that contex-
tual changes in urgency affect both arm- and eye move-
ments simultaneously (Thura and others 2014), a third 
prediction would be that the speed with which a given 
individual moves in one motor modality should be a sta-
tistically significant predictor of their speed when using 
other bodily effectors. Recently, Reppert and others 
(2018) have shown that “trait” levels of vigor appear to 
be shared across the skeletomuscular system, such that 
different individuals’ characteristic motor kinematics are 
similar when performing orienting movements with dif-
ferent bodily effectors (e.g., head, neck, and arm move-
ments). In fact, individual differences in movement vigor 
are sufficiently robust that several recent studies have 
even demonstrated that these characteristic patterns of 
motor behavior may serve as fairly reliable biometric 
markers for identifying specific individuals (Friedman 
and others 2017; Rigas and others 2016).

Taken together, these findings suggest that decision 
makers exhibit a set of systematic and consistent interre-
lationships between multiple indices of behavior during 
motor-control and decision-making tasks—each of which 
follow naturally from the proposal that these diverse 
behavioral outputs are under the control of a common 
mechanism whose “default” setting varies across indi-
viduals. However, because urgency is proposed to serve 
as the common mechanism by which subjective estimates 
of reward rate are effectively “translated” into behavior, 
additional sources of inter-individual variability within 
any factor that affects reward-rate estimation itself are 
also likely to be reflected in an individual’s characteristic 
level of urgency. On this point, it is worth noting that 
robust and stable individual differences have been previ-
ously reported for a variety of decision-making and 
reward-related mechanisms, including reward sensitivity 
(Baskin-Sommers and Foti 2015), risk aversion (Chen 
and Kwak 2017), effort cost estimation (Treadway and 
others 2012a), and temporal discounting rates (Choi and 
others 2014; Kirby 2009)—each of which serve as inputs 
to reward rate estimation. Thus, it remains an open ques-
tion to what extent “trait” urgency may also constitute a 
higher-order construct encapsulating multiple sources of 
variance among a variety of lower-order mechanisms 
commonly related to reward processing. Nonetheless, the 
ability to capture individual variability within a number 
of critical mechanisms related to reward processing, 
combined with its relatively direct relationship to a 

variety of discretely quantifiable behaviors commonly 
related to the speed of decisions and actions, suggests that 
urgency may be a particularly useful construct for con-
ceptualizing certain phenotypic personality traits, such as 
impulsivity.

Urgency as a Mechanism of 
Impulsivity

Although not formally considered a clinical condition in 
and of itself, trait impulsivity is known to play a role in 
the development of a variety of clinical psychopatholo-
gies, including attention deficit hyperactivity disorder, 
substance abuse disorders and addiction, problem gam-
bling, disordered eating, and “externalizing behaviors” 
such as aggression (Cyders and others 2007; Egervari and 
others 2018; Martin and others 2014). However, while 
the etiological ramifications of trait impulsivity have 
been relatively well mapped out over the past several 
decades, comparatively little remains known about the 
underlying cognitive, behavioral, and neurobiological 
mechanisms involved in the origins of impulsive behav-
iors (Aichert and others 2012; Cyders & Coskunpinar 
2011). Consequently, the fact that the “downstream” 
behavioral effects of urgency are commonly related to the 
overall quality and hastiness of decisions raises the ques-
tion of whether individual differences in urgency may be 
implicated in the phenotypic class of behaviors com-
monly recognized as trait impulsivity.

On a conceptual level, the behavioral profile of an indi-
vidual with a relatively high “trait” level of urgency would 
be broadly consistent with many of the known cognitive 
and behavioral hallmarks of impulsivity. For example, the 
direct relationship between elevated states of urgency and 
faster, less-accurate decisions fits in quite neatly with the 
well-known tendency of impulsive individuals not to think 
long before deciding and acting (Burnett-Heyes and others 
2012; Voon 2014). Impulsive individuals also generally 
exhibit greater difficulty withholding or inhibiting “prepo-
tent” motor responses (Aichert and others 2012; Choi and 
others 2014), which would be expected if the same mecha-
nism that produces shorter decision times is also fed into 
the motor system to place it into a higher state of readiness 
for action (Spieser and others 2017).

Although largely indirect and provisional, additional 
evidence is provided by a number of recent studies which 
have reported findings explicitly linking urgency-related 
behaviors to psychometric measures related to trait impul-
sivity. For example, Berret and others (2018) have reported 
positive correlations between movement vigor and bore-
dom proneness, a construct that is related to broader trait 
impulsivity via an intermediary sub-factor variously 
termed Sensation Seeking or (lack of) Perseverance (Watt 
& Vodanovich 1992; Whiteside & Lynam 2001). Relatedly, 
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a study by Dalley and Robbins (2017) has shown that 
impulsive individuals also exhibit markedly steeper tem-
poral discounting rates. Such a link would be expected 
given that higher urgency both shortens decision times and 
produces faster motor actions, each of which are effective 
means for minimizing reward delays, thereby partially 
counteracting the subjective reduction in reward rates 
caused by exaggerated temporal discounting policies in 
these individuals (Haith and others 2012; Shadmehr and 
others 2010; Summerside and others 2018).

Although each of these relationships between impul-
sivity and decision-making behavior could in principle 
arise from multiple distinct mechanisms, the underlying 
pattern of interrelationships observed across these studies 
are broadly consistent with—and follow straightforwardly 
from—a trait-like view of urgency. Taken together, the 
various findings reviewed above may suggest a “dimen-
sional” conceptualization of trait urgency (Fig. 7), accord-
ing to which relatively elevated levels of urgency within 
individuals could contribute to recognizable personality-
level differences in trait impulsivity. By extension, above- 
or below a certain range of “normal” population-level 
variability, significant deviations from the population-
wide average level of trait urgency may confer increased 
etiological vulnerability to a variety of clinical patholo-
gies involving disordered responsiveness to reward, 
impaired motivation, and/or impairments in decision mak-
ing—a subject to which we turn next.

The Neurobiology of Urgency as a 
“Transdiagnostic” Mechanism in 
Clinical Etiology
In light of the considerable evidence linking urgency to 
dopaminergic activity in the basal ganglia, clinical disor-
ders that are known to involve disruptions in dopaminer-
gic neurotransmission would be especially likely to 
interfere with the neurobiological substrates regulating 
urgency and its adjustment across contexts, in turn pro-
ducing observable impairments in the ability to initiate, 
sustain, and motivate actions. Additionally, if urgency 
signals are broadcast widely throughout the cortex by 
centrally located subcortical structures within the BG, 
then unbalanced or dysregulated urgency output into dif-
ferent cortical networks could interact with the local 
functionality of these afferent regions to produce a vari-
ety of specific symptoms or deficits (Fig. 5). In this man-
ner, pathophysiological alterations to a single underlying 
urgency mechanism could potentially account for a 
broad variety of symptoms across multiple diagnostic 
categories, thereby constituting a transdiagnostic etio-
logical mechanism (Insel and others 2010). In what fol-
lows, we focus on two particularly illustrative 
examples—depression and Parkinson’s disease—
although these are only two of many potential candidate 
clinical disorders whose etiology may be amenable to an 
urgency-based perspective.

Figure 7. A “dimensional” view of trait urgency. Subjects drawn from non-clinical populations exhibit interindividual variability 
in decision-making behavior across a variety of quantifiable dimensions of performance (bottom), the interrelationships between 
which can be accounted for by the common involvement of a singular underlying urgency mechanism whose “default” or 
“baseline” level varies across individuals. By extension, individuals at the higher end of the population range would be predicted 
to exhibit a constellation of cognitive and behavioral tendencies which are broadly consistent with the core features of a general 
“impulsivity” personality phenotype. Further deviations from the “normal” range of variability may confer increasing etiological 
susceptibility to a variety of disorders by directly contributing to the emergence of symptoms related to the various behavioral 
functions that fall under the control of this urgency mechanism.
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Urgency and Depression

Although typically regarded primarily as a mood disor-
der, the DSM-5 (Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition) criteria for major 
depressive disorder (MDD) nonetheless include a num-
ber of non-affective symptoms related to motivation and 
psychomotor control (American Psychiatric Association 
2013). MDD patients frequently exhibit deficits in the 
“activational” aspects of motivation, presenting in the 
form of highly-generalized symptoms such as low energy 
(anergia), apathy, and fatigue—which are in fact some of 
the most frequently-reported symptoms of MDD, second 
only to the primary mood disturbances themselves (Stahl 
2002). Another prominent non-affective symptom of 
depression is psychomotor slowing (sometimes also 
called psychomotor- or neurocognitive retardation), a 
symptom that manifests as a generalized slowing of 
movements and cognition (American Psychiatric 
Association 2013). Together, these non-affective symp-
toms form a “motivational” symptom cluster that is a 
prominent diagnostic feature of all major depression syn-
dromes, and which often proves remarkably resistant to 
treatment (Demyttenaere and others 2005; Fava and oth-
ers 2014; Stahl 2002). The relative severity of these 
symptoms is also strongly associated with the number of 
depressive episodes, their duration, and age of disease 
onset (Calugi and others 2011) and is one of the single-
best quantitative predictors of lack of clinical remission 
among MDD patients undergoing treatment (Fava and 
others 2014; Gorwood and others 2014).

Selective serotonin reuptake inhibitors (SSRIs) are 
the first-line pharmacological treatments for depression 
and are generally effective for alleviating the principal 
affective symptoms of MDD (Chekroud and others 
2017). However, the non-affective, “motivational” 
symptoms of depression are generally resistant to treat-
ment with first-line antidepressants (Stahl 2002; 
Treadway and Zald 2011), and often continue to persist 
even after clinical remission of the primary (affective) 
symptoms (Fava and others 2014; Gorwood and others 
2014). Conversely, motivational symptoms appear to be 
responsive to drugs targeting non-serotonergic mono-
amines, such as the noradrenaline- and dopamine-reup-
take inhibitor (NDRI) bupropion (Pae and others 2007; 
Stahl 2002; Treadway and Zald 2011; Zisook and others 
2006). Similarly, drugs that selectively target dopamine 
(DA) transport and synaptic activity—including amphet-
amines (e.g., dextroamphetamine) and non-amphetamine 
stimulants (e.g., methylphenidate, modafinil)—have 
been successfully used by clinicians to treat these symp-
toms, despite the fact that these drugs are not typically 
considered to be “antidepressants” in the classical sense 
(Demyttenaere and others 2005; Stahl and others 2003). 

Together, these pharmacological dissociations suggest 
that the “affective” and “motivational” symptom 
domains likely emerge from functionally and pharmaco-
logically independent neurobiological substrates 
(Argyropoulos and Nutt 2013; Nutt and others 2007; 
Stahl and others 2003).

Although motivational symptoms are often described 
by clinicians and patients alike in terms of a generalized 
absence of pleasure, several lines of evidence suggest that 
these symptoms need not necessarily arise due to a pri-
mary deficit in the ability to experience hedonic or con-
summatory pleasure per se (Sherdell and others 2012). 
Rather, the “motivational syndrome” frequently observed 
in depression may instead emerge as the distal result of 
underlying primary impairments in mechanisms related 
to reward sensitivity and/or effort-based decision making 
(Treadway and Zald 2011). For example, depressed 
patients exhibit behavioral patterns consistent with 
diminished sensitivity to the magnitude and probability 
of rewards compared with healthy controls (Treadway 
and others 2012b). Patients with MDD also appear to be 
subconsciously “less willing” to exert effort to obtain 
rewards, such that they report greater subjective difficulty 
in producing identical grip forces relative to healthy con-
trols, even when reward is held constant across subject 
groups (Cléry-Melin and others 2011). Notably, these 
reward-modulation deficits generally scale in direct pro-
portion to the severity of patients’ self-reported anhe-
donic symptomology (Pizzagalli and others 2008) and are 
associated with substantially higher likelihood of the per-
sistence of their MDD diagnosis (Vrieze and others 
2013). Additionally, extensive neurophysiological work 
in animal models has demonstrated that surgical, optoge-
netic, pharmacological, and genetic disruptions of dopa-
minergic neurotransmission among a variety of 
subcortical structures implicated in effort-based decision 
making consistently produce alterations of behavior that 
are highly reminiscent of the clinical presentations of 
motivational symptoms in human patients (Salamone and 
others 2018). Consequently, the picture that is rapidly 
emerging from the ongoing study of reward-processing 
deficits in depression suggests that the motivational 
symptoms of MDD are likely the result of underlying 
impairments in the neural circuitry by which cognitive 
and behavioral activity is effectively “energized” by 
reward (Cléry-Melin and others 2011; Salamone and 
Correa 2012; Salamone and others 2016; Treadway and 
others 2012b). By extension, this could indicate an under-
lying impairment in an urgency-like mechanism, of 
which these symptoms would be secondary, “down-
stream” consequences.

Although the above studies have not explicitly inter-
preted their results in terms of urgency, a related body of 
behavioral studies in human depression patients reveals 
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specific patterns of performance that are nonetheless con-
sistent an underlying impairment in urgency. For exam-
ple, depressed patients typically take longer than healthy 
controls to complete laboratory tests of cognitive func-
tioning, and commonly exhibit slower response times 
than controls across a wide variety of decision-making 
tasks (Bennabi and others 2013; Buyukdura and others 
2011; Gorwood and others 2014; Rubinsztein and others 
2006). Tasks that tap into urgency-related behavioral 
measures may even be used to inform clinical treatment, 
as several studies in depressed populations have reported 
that patients with more pronounced symptoms of psycho-
motor slowing have a greater likelihood of responding to 
treatment with pharmacological agents targeting dopami-
nergic and noradrenergic neurotransmission, and a cor-
respondingly lower likelihood of responding to SSRI 
treatment (Bruder and others 2014; Stahl 2002). 
Conversely, faster response times in various motor, atten-
tion, and verbal fluency tasks (Gorlyn and others 2008; 
Taylor and others 2006), as well as increased rates of 
commission errors (i.e., urgency-driven or “impulsive” 
responding) in a Go/No-Go task (Crane and others 2017), 
are each reliable predictors of clinical response to treat-
ment with SSRIs (possibly because these behaviors indi-
cate a neuropharmacologically intact underlying urgency 
mechanism). Consequently, meta-analyses have con-
cluded that experimental tasks that tap into urgency-
related psychomotor processes are among the best 
neurocognitive measures for predicting the likelihood of 
successful clinical response to conventional (i.e., seroto-
nergic) treatment (Voegeli and others 2017).

In summary, a considerable body of clinical and 
experimental evidence implicates pathophysiological 
alterations of dopaminergic signaling in the BG in the 
cluster of psychomotor and motivational deficits fre-
quently observed in depression patients. Moreover, they 
further suggest that the neurobiological substrates of 
urgency may be plausible therapeutic targets in MDD, 
such that laboratory tasks designed to assess urgency may 
have significant diagnostic and prognostic value in 
informing and monitoring clinical treatment.

Urgency and Parkinson’s Disease

Parkinson’s disease (PD) is characterized by the progres-
sive loss of dopaminergic cells in the nigrostriatal path-
ways of the BG, culminating in a variety of overt motor 
symptoms including resting tremors, muscular rigidity, 
and bradykinesia, a generalized slowing of movements 
(Albin and Leventhal 2017; Magrinelli and others 2016). 
Patients with bradykinesia experience considerable diffi-
culty in planning, initiating, executing, and sustaining 
movements—highly generalized deficits which affect 
motor performance across multiple domains, including 

stride length and gait, arm movements, and speech 
(McDonald and others 2015).

While these symptoms have traditionally been ascribed 
to a central impairment of motor control, accumulating 
empirical evidence suggests that patients with PD may 
not actually suffer from an inability to perform move-
ments per se. For example, fine-grained kinematic analy-
ses of bradykinetic patients with PD reveal that these 
patients remain objectively capable of executing move-
ments within the same range of accuracy and movement 
speeds as healthy controls, albeit less reliably (Mazzoni 
and others 2007), and that these putative “motor” impair-
ments may instead be better accounted for by an insuffi-
cient modulation of the motor system by internal signals 
of reward (Pekny and others 2015). Such an interpreta-
tion is particularly well-illustrated by the phenomenon of 
paradoxical kinesis, in which the dramatic motor impair-
ments of patients with PD can be temporarily overcome 
under situations of elevated or extreme “urgency” (in the 
colloquial sense of the term) (Ballanger and others 2008; 
McDonald and others 2015). This phenomenon thus pro-
vides further evidence that the central underlying deficit 
in PD is not explicitly “motor” in nature, but rather 
involves a disruption in the brain’s normal ability to use 
internal representations of reward to motivate or “ener-
gize” actions (Ballanger and others 2008; Chong and oth-
ers 2015; Kojovic and others 2016).

Interestingly, PD is also highly comorbid with depres-
sion (Koerts and others 2007)—and symptoms in the 
“motivational” domain (such as anhedonia) are the most 
frequently reported among depressed PD patients. 
Conversely, other common “affective” symptoms of 
MDD—such as feelings of sorrow, shame, and guilt—are 
disproportionately under-reported by depressed PD 
patients relative to non-PD MDD patients (Rana and others 
2015). These observations suggest that the particular 
depressive endophenotype observed in PD patients may be 
directly related to the dopaminergic neurodegeneration in 
PD, thus implicating impaired urgency as a shared etio-
logical mechanism across each of these clinical disorders.

The primary clinical treatment for PD is dopamine 
replacement therapy (DRT), which involves restoring 
endogenous dopaminergic neurotransmission by admin-
istering a variety of DA agonists and metabolic precur-
sors (such as L-DOPA), which in the short-to-medium 
term often dramatically alleviate the cardinal motor 
symptoms of PD (Albin and Leventhal 2017). 
Pharmacological studies of the effects of DA agonists in 
both healthy and clinical subjects suggest that these drugs 
alleviate the motor impairments in PD specifically by 
enhancing or restoring the ability of internal signals of 
reward to “energize” or “invigorate” motor activity 
(Beierholm and others 2013; Chong and others 2015; 
Kojovic and others 2016). This hypothesis is consistent 
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with the known functionality of the BG: Because vigor 
scales directly as a function of dopaminergic activity in 
BG areas such as the striatum, the pathophysiological 
loss of dopaminergic cells in these regions would straight-
forwardly result in globally diminished urgency, thereby 
interfering with the modulation of externally directed 
behavior by internal signals of reward (da Silva and oth-
ers 2018; Panigrahi and others 2015).

While the deficits observed in the typical pathophysio-
logical course of PD are suggestive of a chronic “low-
urgency” state, the consequences of long-term treatment 
frequently result in a coherent suite of changes in tempera-
ment, cognition, and behavior that are—conversely—highly 
reminiscent of a chronic “high-urgency” state. Behavioral 
studies of PD patients undergoing DRT have reported sig-
nificantly exaggerated temporal discounting rates in these 
populations (Housden and others 2010), as well as other 
decision-making deficits broadly consistent with elevated 
trait impulsivity (Djamshidian and others 2014; Kojovic and 
others 2016). Similarly, a significant number of patients who 
receive deep-brain stimulation (DBS) to counteract the loss 
of endogenous dopaminergic neurotransmission in the BG 
exhibit pronounced post-treatment changes in personality 
that are consistent with elevated trait impulsivity (Frank and 
others 2007), and which can be quantitatively measured 
with both self-report psychometric batteries (Hälbig and 
others 2009) and behavioral tasks (Wylie and others 2010). 
Long-term treatment with both DRT and DBS has also been 
associated with greatly increased risk of mania (Maier and 
others 2014) and various impulse control disorders (ICDs), 
including hypersexuality, binge eating, compulsive shop-
ping, and pathological gambling (Lopez and others 2017). 
Notably, the incidence and temporal onset of treatment-
related ICDs correlates with both the duration of DA agonist 
treatment and escalation of dose (Maier and others 2014; 
Molina and others 2000; Seedat and others 2000), suggest-
ing that the risk of impulsivity-related iatrogenic disorders is 
directly commensurate with the degree of therapeutic expo-
sure to dopaminergic agents.

However, the fact that not all patients with PD develop 
such behavioral issues has motivated the search for pre-
morbid risk factors that may help identify PD patients at 
risk for treatment-related ICDs. Consequently, several 
studies have noted that adverse consequences of DRT are 
significantly more prevalent among sub-populations of 
PD patients who may have been predisposed due to preex-
isting personality factors, such high premorbid trait impul-
sivity (Heiden and others 2017). The fact that similar 
etiological factors are also associated with the develop-
ment of these behavioral disorders within the general (i.e., 
non-clinical) population (Johansson and others 2009) sug-
gests that multiple temperamental and neuropharmaco-
logical factors may combine additively to increase the risk 
of impulsivity-related psychopathology—and thus that 

these various factors may share a common mechanism 
and/or neurobiological substrate.

In summary, the clinical course of PD suggests that the 
progressive loss of dopaminergic tone in key subcortical 
networks initially manifest as a chronic “low-urgency 
state,” thereby resulting in the hallmark “motor” symp-
toms of PD as well as the potential emergence of a distinc-
tive depressive endophenotype predominated by 
“motivational” symptoms. Conversely, reversal of the pri-
mary “motor” syndrome of PD via chronic administration 
of DRT and/or DBS may produce a shift of the underlying 
neurobiological substrates into a “high-urgency” state, 
potentially culminating in mania, elevated trait impulsiv-
ity, and the development of iatrogenic ICDs. PD thus 
serves as a particularly relevant example of the potential 
clinical relevance of urgency, as both its typical etiopatho-
logical course and the neuropharmacology involved in its 
treatment illustrate and recapitulate the full spectrum of 
urgency’s hypothesized behavioral functions (Fig. 7).

Concluding Remarks

Here, we reviewed the theoretical basis and the neural 
and behavioral data supporting the existence of an 
“urgency signal,” carried by projections from the basal 
ganglia to the cerebral cortex, which influences both the 
timing of decisions and the vigor of actions in the service 
of maximizing reward rates. We propose that a growing 
urgency to decide and act is largely responsible for the 
build-up of neural activity often observed during deci-
sion-making tasks. Furthermore, the particular setting of 
the urgency signal is dependent both on contextual fac-
tors as well as individual preferences and influences a 
wide range of behavioral measures such as reaction times, 
accuracy, and movement speed. Consequently, it may 
provide a unifying mechanistic link for explaining a wide 
variety of phenomena in both health and disease, ranging 
from personality traits such as impulsivity to some of the 
major symptom domains commonly observed in depres-
sion and PD. Ultimately, the emergence of urgency’s 
effects across a diverse range of cognitive and behavioral 
domains stems from the fact that all these domains are 
pertinent to the fundamental motivation to improve what 
all animals care about the most: reward rate.
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