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Integrated Neural Processes for Defining Potential Actions
and Deciding between Them: A Computational Model
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To successfully accomplish a behavioral goal such as reaching for an object, an animal must solve two related problems: to decide which
object to reach and to plan the specific parameters of the movement. Traditionally, these two problems have been viewed as separate, and
theories of decision making and motor planning have been developed primarily independently. However, neural data suggests that these
processes involve the same brain regions and are performed in an integrated manner. Here, a computational model is described that
addresses both the question of how different potential actions are specified and how the brain decides between them. In the model,
multiple potential actions are simultaneously represented as continuous regions of activity within populations of cells in frontoparietal
cortex. These representations engage in a competition for overt execution that is biased by modulatory influences from prefrontal cortex.
The model neural populations exhibit activity patterns that correlate with both the spatial metrics of potential actions and their associ-
ated decision variables, in a manner similar to activities in parietal, prefrontal, and premotor cortex. The model therefore suggests an
explanation for neural data that have been hard to account for in terms of serial theories that propose that decision making occurs before
action planning. In addition to simulating the activity of individual neurons during decision tasks, the model also reproduces key aspects
of the spatial and temporal statistics of human choices and makes a number of testable predictions.
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Introduction
Traditional psychological theories have viewed decision making
as a higher cognitive process that is separate from the neural
systems of perception and action (Tversky and Kahneman,
1981). Likewise, most models assume that action planning is sep-
arate from cognitive processes and begins only after a decision is
made (Flash and Hogan, 1985; Kawato et al., 1990; Mel, 1991;
Bhushan and Shadmehr, 1999). However, a growing body of neu-
rophysiological data show decision-related activity in many of
the same neural regions generally implicated in sensorimotor
processing and action planning, such as premotor and parietal
cortex (Platt and Glimcher, 1999; Gold and Shadlen, 2000; Hoshi
et al., 2000; Roesch and Olson, 2004; Romo et al., 2004; Sugrue et
al., 2004; Cisek and Kalaska, 2005). These observations have led
to persistent debates regarding the functional role of some of
these regions. For example, strong experimental results have
placed the lateral intraparietal area (LIP) within the category of
perception (Kusunoki et al., 2000), cognition (Platt and Glim-
cher, 1999), or action planning (Snyder et al., 1997), without a
clear way to reconcile these findings.

A pragmatic perspective may shed some light on these issues.
For example, for a primate to successfully accomplish a behav-

ioral goal such as reaching for a piece of fruit, it must solve two
related problems: to select which fruit to reach for and to specify
the parameters of the reach, such as its direction and extent.
Although each of these problems can be studied in isolation, the
brain must ultimately solve them in an integrated manner. To
decide, one must have a set of alternatives to decide between, and,
in many real-world situations, those alternatives are concrete ac-
tions. If representations of several potential actions are generated
simultaneously, then their predicted consequences can be esti-
mated and used for selection. Thus, an integrated system that
simultaneously specifies multiple potential actions and selects
between them may implement the kind of decision making that is
arguably fundamental for real-time behavior.

Below, a computational model is developed based on the pro-
posal that action specification and selection take place through a
single unified mechanism. In the model, a cell tuned to a specific
value of some spatial parameter of movement is active in propor-
tion to sensory and cognitive information favoring the selection
of actions with that specific parameter value. A population of
such cells implements a representation akin to a probability den-
sity function of potential action parameters (Erlhagen and
Schöner, 2002; Sanger, 2003; Knill and Pouget, 2004). As the model
illustrates, this mixed representation can be used to solve, in parallel,
both the problem of specifying the spatial metrics of a potential
action (an aspect of planning) and the problem of selecting between
different potential actions (decision making). This explains why cell
activity in premotor and parietal cortical regions correlates with both
spatial and cognitive variables. Simulations show that model popu-
lations behave very much like cells recorded from the cerebral cortex
of monkeys performing reach-decision tasks, and the behavior of the
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Postale 6128 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7. E-mail: paul.cisek@umontreal.ca.

DOI:10.1523/JNEUROSCI.5605-05.2006
Copyright © 2006 Society for Neuroscience 0270-6474/06/269761-10$15.00/0

The Journal of Neuroscience, September 20, 2006 • 26(38):9761–9770 • 9761



model as a whole exhibits the spatial and
temporal trends of human decision-making
behavior.

Materials and Methods
The model described below is a systems-level
model aimed at explaining and predicting
systems-level phenomena such as response pat-
terns over large populations of neurons. It is not
intended to simulate neural activity at a detailed
level of physiological realism or to capture data
on cortical layers, cell types, and the spiking be-
havior of individual cells. The mathematical
equations used significantly simplify the opera-
tions that may actually take place in the nervous
system. This is done to make it possible to sim-
ulate activity of populations of neurons in sev-
eral regions of the cerebral cortex and to make
predictions on how those populations of cells
will behave in novel experimental situations.

The model was implemented as a set of equa-
tions describing the activity of several popula-
tions of neurons that correspond to specific re-
gions of the cerebral cortex. Each population is
organized as a layer of neurons that are tuned to
spatial directions of potential actions. The ac-
tivity in each population is intended to capture
features of activity observed in the correspond-
ing cortical region during neurophysiological
experiments. The connections between layers
are hardwired and organized to respect basic
neuroanatomical connection patterns.

Figure 1a illustrates the circuit model and
how its elements correspond to specific cortical regions. Each neural
population was simulated as a set of 90 “mean-rate leaky-integrator”
neurons that behave according to an equation of the following form
(Grossberg, 1973):

dX

dt
� ��X � �� � X�� � E � X � I � � ,

where X is the mean firing rate of a given neuron, dX/dt is the change in
that rate over time, E is the excitatory input, I is the inhibitory input, � is
a decay rate, � is the maximum activity of the neuron, � is the excitatory
gain, and � is Gaussian noise. In other words, this equation defines how
the activity of a neuron changes over time as a function of four terms:
passive decay (first term), excitation toward saturation (second term),
inhibition (third term), and noise (fourth term). Ninety neurons were
used in each layer to provide good directional resolution for specifying
potential actions. Although the dynamics of all cells in all layers were
similar, they exhibited different properties attributable to differences in
their excitatory and inhibitory connections. Detailed equations describ-
ing cell behavior, connectivity, and analysis of parametric robustness are
described in the supplemental data (available at www.jneurosci.org as
supplemental material).

Although the details of the mathematical equations are interesting,
they are not the major goal of this modeling study. The major goal is to
make explicit a set of hypotheses on how action planning and decision
making take place in the cerebral cortex. There are four hypotheses of
central interest.

(1) Neural populations do not each encode only a unique value of the
output parameters of a given movement. Instead, they encode entire
ranges of potential values of movement parameters using a distributed
activation code in which each individual cell is tuned to a specific value of
a given movement parameter (e.g., direction), and its level of activity is
related to the sensory and cognitive information favoring actions with
that particular parameter value (Cisek, 2001; Erlhagen and Schöner,
2002; Sanger, 2003; Knill and Pouget, 2004).

(2) Sensory information from the dorsal visual stream is transformed

to specify the spatial parameters of several currently available potential
actions in parallel. These potential actions are represented simulta-
neously in the activity of neurons in frontal and parietal cortical regions
(Platt and Glimcher, 1997; Cisek and Kalaska, 2005).

(3) Representations of potential actions compete against each other, at
several points along the sensorimotor continuum, through mutual inhi-
bition between cells with different parameter preferences. This is related
to the biased competition mechanism used in theories of visual attention
(Desimone, 1998; Boynton, 2005).

(4) The competition is biased by a variety of influences from other
regions, including the prefrontal cortex (PFC) (Miller, 2000; Tanji and
Hoshi, 2001) and the basal ganglia (Redgrave et al., 1999), which accu-
mulate information on a slower timescale.

The implementation of these four hypotheses is described below.
Hypothesis 1: representation of actions in neural populations. In the

model, neural populations do not represent a unique value of a move-
ment parameter, such as a single direction in space, but can represent an
entire distribution of potential movement parameters. This proposal is
related to the attention model of Tipper et al. (2000), the “decision field”
theory of Erlhagen and Schöner (2002), and the “Bayesian coding” hy-
pothesis (Dayan and Abbott, 2001; Sanger, 2003; Knill and Pouget,
2004). It suggests that, given a population of cells, each with a preferred
value of a particular movement parameter, one can interpret the activity
across the population as something akin to a probability density function
of potential values of that parameter (Fig. 2). For example, if some cell
population encodes movements in a spherical coordinate system cen-
tered on the hand, then the activity of a cluster of cells with particular
preferences for the values of azimuth and elevation would indicate the
possibility of moving in that direction (Fig. 2b). In some cases (Fig. 2c,
top), the population may encode a range of contiguous values defining a
single action. In other cases (Fig. 2c, bottom), several distinct and mutu-
ally exclusive potential actions can be represented simultaneously as dis-
tinct peaks of activity in the population. The strength of the activity
associated with a particular value of the parameter reflects the likelihood
that the final action will have that value, and it is influenced by a variety

Figure 1. Computational model. A, Network architecture. Each layer consists of neurons with different directional preferences,
and different layers are connected with recurrent topographic projections. Neurons along the frontoparietal stream (PPC–PMd–
M1) have high directional resolution but no color sensitivity. In contrast, neurons in the PFC combine color sensitivity and low
directional resolution. B, Within each of the frontoparietal layers, cells with similar directional preferences excite each other,
whereas cells with different preferences mutually inhibit each other. The plot shows how this influence varies as a function of the
difference in preferred direction. The thickness of the line illustrates the magnitude of random variations. C, The influence of a PMd
cell on its neighbor is plotted as a function of its activity.
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of factors, including salience, expected reward, estimates of probability,
etc. (see hypothesis 4). In the language of Bayesian coding (Dayan and
Abbott, 2001; Sanger, 2003; Knill and Pouget, 2004), the population
represents the conditional probability density function for different di-
rections of movement. Therefore, activity in the population is correlated
with many decision variables, as observed in frontal and parietal cortex
(Kim and Shadlen, 1999; Platt and Glimcher, 1999; Gold and Shadlen,
2000; Hoshi et al., 2000; Shadlen and Newsome, 2001; Coe et al., 2002;
Glimcher, 2003; Ratcliff et al., 2003; Dorris and Glimcher, 2004; Roesch
and Olson, 2004; Romo et al., 2004; Sugrue et al., 2004; Janssen and
Shadlen, 2005). However, it is not interpreted as an explicit encoding of
any of those variables because it is never decoded to retrieve them. Thus,
although the population behaves very much like a “salience map”
(Kusunoki et al., 2000), it is not interpreted as a purely sensory represen-
tation (see Discussion).

This concept of distributed representation is very general and can be
used to represent the metrics of potential actions in a variety of coordi-
nate systems. Different neural populations in different brain regions can
encode movements in different coordinate systems with adaptive map-
pings converting information from one to another. Although this is an
important future extension of the model, in the present treatment, the
issue is not addressed. For simplicity, we will consider all model popula-
tions to represent targets and movements in terms of the direction from
the hand to an object, coded in extrinsic coordinates. This is not meant as
a hypothesis on the coordinate systems actually used by cortical brain
regions; it is simply a way of leaving the issue unaddressed because it is
orthogonal to the issues being addressed here.

Hypothesis 2: specification of multiple potential actions. The model re-
ceives two kinds of external inputs: (1) visual information about objects
in the environment; and (2) a Go signal. Visual information consists of a
vector of binary values indicating the presence or absence of an object of
a particular category at a particular location. Cells in the posterior pari-
etal cortex (PPC) process visual information with high resolution (sen-
sitive to 4° of direction) but are insensitive to category information. PPC
cells also receive feedback excitation from the dorsal premotor cortex
(PMd). Lateral interactions within PPC involve mutual excitation from
neighboring cells with a similar preferred direction (PD) and inhibitory
input from cells with different PDs (Fig. 1b). Because of this on– center–
off–surround architecture, visual input is contrast enhanced (Grossberg,
1973), forming distinct broad peaks centered on the directions to given
objects. PMd was simulated in a similar manner, receiving excitatory
input from “upstream” PPC cells as well as feedback excitation from
“downstream” regions, and included lateral interactions within PMd.
These populations can therefore represent multiple potential actions

(Fig. 2c), as a set of bell-shaped peaks in neural
activity (constrained by the on– center– off–
surround lateral interactions), although they
cannot encode fully arbitrary probability den-
sity functions. Note that, although the physical
presence of lateral interactions in frontal motor
regions has not been established, it is suggested
by some neural response phenomena (Georgo-
poulos et al., 1993; Cisek and Kalaska, 2005).

Importantly, the input to PMd from PPC is
modulated by biasing signals from PFC, as de-
scribed below. These features of the model ar-
chitecture capture basic patterns of neuroanat-
omy, including the divergence of the visual
system into dorsal and ventral streams (Milner
and Goodale, 1995) and the reciprocal topo-
graphic connections between frontal and pari-
etal cortex (Johnson et al., 1996; Rizzolatti and
Luppino, 2001).

Because of reciprocal connections between
PPC and PMd, both regions exhibit similar re-
sponses to visual inputs specifying potential
targets for movement. These responses persist
even after the targets disappear as a result of
positive feedback between PPC and PMd. If
multiple potential targets are presented, dis-

tinct peaks of activity will appear, first in PPC and then in PMd, repre-
senting the potential actions of moving to each of these targets. Because
of lateral interactions within both PPC and PMd, these peaks of activity
will compete against each other, but, in the absence of information fa-
voring one over the other, their influence will be balanced.

Hypothesis 3: competition between potential actions. The nature of the
interaction among cells within individual layers of the model is critical to
its behavior. Because neural activities are noisy, competition between
distinct peaks of activity cannot follow a simple “winner-take-all” rule or
random fluctuations would determine the winner each time, rendering
informed decision making impossible. To prevent this, small differences
in levels of activity should be ignored by the system. However, if activity
associated with a given choice becomes sufficiently strong, it should be
allowed to suppress its opponents and conclusively win the competition.
In other words, there should be a threshold of activity above which a
particular peak is selected as the final response choice. As described by
Grossberg (1973), implementing such resistance to noise as well as a
decision threshold within a competitive network can be done using a
nonlinear function defining interactions between neighboring cells. The
function used here is of the form shown in Figure 1c. When two or more
peaks are present in the population and have low levels of activity, their
influence on each other de-emphasizes differences between their activi-
ties. Thus, neither peak exerts inhibitory influence on the other strongly
enough to overcome the positive feedback that sustains each peak. How-
ever, once one activity peak increases, it begins to exert stronger and
stronger suppression on its opponents, thus winning the competition.
The point at which a given peak becomes the winner is called a “quench-
ing threshold” (Grossberg, 1973), and it effectively acts as a threshold for
committing to a particular decision. Unlike classical models of decision
thresholds and reaction time (RT) (Carpenter and Williams, 1995; Ma-
zurek et al., 2003; Smith and Ratcliff, 2004), the quenching threshold is
not a preset constant but an emergent threshold that depends on the
number of choices, their relative and absolute strengths, and even the
angular distance between them.

Hypothesis 4: biasing influences. The competition between potential
actions can be biased by modulatory input from a variety of sources. This
could include attentional modulation in the visual system (Boynton,
2005), reward prediction signals from the basal ganglia and orbitofrontal
cortex (Schultz, 2004), or inputs from the PFC that collect evidence in
favor of a particular choice. The present model includes only one source
of biasing, from the lateral PFC, which exhibits two basic features. First,
it is sensitive to conjunctions of relevant sensory and cognitive informa-
tion, as shown in a number of studies of PFC neurons (Rainer et al., 1998;

Figure 2. Distributed representation of multiple potential actions. A, The presence of two objects within reach (colored
spheres) specifies a variety of potential directions for reaching actions (arrows). B, These potential actions can be simultaneously
encoded within a population of neurons sensitive to specific parameters of movement (e.g., azimuth and elevation). This is shown
as a map in which individual cells (circles) lie at points determined by their preference for particular values of those parameters. A
given pattern of cell activities within the population defines contiguous regions of activity on this map, corresponding to particular
reaching actions (colored regions). C, The activity across a population of cells can represent a single potential action (top) or it can
specify several potential actions as separate peaks of activity (bottom). Narrow peaks define actions with high levels of precision,
whereas broad peaks can be used to specify a parameter more vaguely. The magnitude of activity of a given peak indicates the
likelihood that the final selected action will have the parameter values specified by that peak.
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White and Wise, 1999; Miller, 2000; Tanji and
Hoshi, 2001). Second, PFC activity gradually
accumulates at a rate proportional to the
strength of evidence for a given choice (Kim
and Shadlen, 1999).

The present model does not propose hypoth-
eses on how PFC cells learn to detect relevant
information or how their dynamics produce the
gradual accumulation. These properties are
simply wired into the model (supplemental
data, available at www.jneurosci.org as supple-
mental material) by separating PFC cells into
two populations sensitive to two categories of
visual input (red or blue) and giving them very
low spatial resolution (40° of angle) and slow
dynamics relative to PMd and PPC. For a more
detailed model of PFC working memory, see
Compte et al. (2000), and, for a more realistic
implementation of robust neural integration,
see Goldman et al. (2003). Because the dynam-
ics of model PFC cells are slow, their activity
gradually grows whenever they are presented
with inputs that match their spatial preference,
their category preference, or both. Thus, they
integrate over time the total evidence in favor of
a particular choice of action. If the evidence is
stronger for one action than for another, PFC
cells will bias the competition within PMd until
the quenching threshold is reached and a deci-
sion is made.

Thus, the model suggests that, although the
decision is strongly influenced by “votes” arriv-
ing from PFC, it is actually made in premotor
cortex, in agreement with recent evidence
(Wallis and Miller, 2003; Romo et al., 2004). If
the model were to include multiple sources of
biasing influencing the same frontoparietal
competition, those sources would not always all
favor the same choice. In this case, the final de-
cision would be determined by the strongest
biasing influence arriving in frontoparietal re-
gions at a given time.

The formation of a decision is not perforce
expressed as an overt action. There is a separate
source of input to the model: a Go signal (Cisek
et al., 1998) that modulates the strength of the
PMd projection into the primary motor cortex
(M1). If the Go signal is nonzero, the pattern of
activity in PMd flows into M1. However, lateral
interactions within M1 are more strongly com-
petitive than those in PMd (supplemental data,
available at www.jneurosci.org as supplemental
material), and multiple peaks of activity cannot
survive in M1. Thus, activation of M1 forces the
system to make a choice, regardless of the pos-
sible presence of multiple PMd peaks.

Results
Simulations of neurophysiological data
Simulations of neurophysiological data
presented here focus on reach-decision
tasks studied by Cisek and Kalaska (2005),
although they are also relevant to a large
number of other studies (Platt and Glim-
cher, 1997; Snyder et al., 1997; Basso and
Wurtz, 1998; Schall and Bichot, 1998; Kim
and Shadlen, 1999; Platt and Glimcher,
1999; Gold and Shadlen, 2000; Hoshi et al.,

Figure 3. Comparison of model cell activity with neural activity in PMd and M1 during two reaching tasks. A, Neural population
data from PMd and M1 of two monkeys performing the two-target task (Cisek and Kalaska, 2005). Examples of the stimuli viewed
by the monkeys are shown at the top. In each three-dimensional color panel, average activity of cells with a given PD is plotted
along the shorter side, and 10 ms slices of time are plotted along the long side. Color indicates change in firing from baseline (see
scale). From left to right, panels are aligned on SC onset, CC onset, and Go signal. The top row shows activity from the rostral part
of PMd, the middle row from caudal PMd, and the bottom row from M1. B, Simulation of the two-target task. As in the neural data,
activity is represented in colored panels with time along the long axis and cells sorted by PD along the short axis. Activity in all
seven model populations is shown. In the simulation, the two targets were presented (SC; 1st black line) at the two locations
indicated to the left of each panel (activating visual units i � 21. . . 29, and i � 61. . . 69) and then disappeared (2nd black line).
The CC (3rd black line) was simulated as uniform excitation to the red-preferring PFC population and then turned off (4th black
line). Finally, the Go signal was given (5th black line). C, Neural population data during the one-target task, with the same format
as in A. D, Simulation of the one-target task, with the same format as in B.
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2000; Coe et al., 2002; Wallis and Miller, 2003; Roesch and Olson,
2004; Romo et al., 2004). In these experiments, monkeys were
trained to use a handle to move a cursor from a central circle to
one of eight peripheral targets. The correct target was indicated
through a series of instructed-delay periods, in three task varia-
tions. In the two-target task (2-T task) (Fig. 3a), two possible
target locations were presented during the spatial-cue (SC) pe-
riod, and one of them was later indicated as the correct target by
a nonspatial color cue (CC). In the one-target task (1-T task) (Fig.
3b), only a single spatial cue appeared, and thus the monkey knew
right away the correct target. In the matching task (MS task) (see
Fig. 5a), the color cue appeared first, and, thus when the spatial
cues later appeared, the monkey knew immediately which one
was correct.

Figure 3a shows neural population activity from PMd and M1
of two monkeys during the 2-T task (Cisek and Kalaska, 2005).
During the SC period, two populations of PMd cells are active
simultaneously and remain active even after the targets disap-
pear. This bimodal pattern of activity is stronger in the rostral
part of PMd than in the caudal part. After the CC, one of these
becomes more active whereas the other is suppressed. The pop-
ulation that remains active predicts the monkey’s upcoming
choice in both correct and error trials. Similar results were seen in
parietal area 5 during the 2-T task (Cisek et al., 2004). Cisek and
Kalaska (2005) interpreted this as evidence that the brain per-
forms sensorimotor processing to represent multiple potential
actions simultaneously before selecting between them. Note that,
because the CC lasted two seconds on average, the monkeys were
not forced to prespecify multiple actions but could have simply
stored the sensory information in memory and then have ample
time to make a decision before converting the information to
specify a single action. Nevertheless, both monkeys appeared to
naturally use a strategy of simultaneous specification.

The model simulation exhibits many of the same phenomena.
During the SC period of the 2-T task, model PMd and PPC pop-
ulations simultaneously encode both potential targets (Fig. 3b).
These activities are maintained after the visual input turns off
because of the positive feedback between PPC and PMd (as ver-
ified by simulations in which the reciprocal connections are re-
duced in gain; data not shown). Thus, the model can maintain a
“working memory” of the stimulus information. These two re-
gions of activity compete against each other in both PPC and
PMd through lateral inhibitory connections within each layer.
The interlayer positive feedback and intralayer inhibition is bal-
anced and resistant to the fluctuations caused by various sources
of noise in the model. In the PFC, the SC input caused activity in
two sets of cells, one corresponding to each stimulus category
(red or blue). When the CC appeared, it was simulated by pre-
senting all of the cells in PFC that prefer the selected category,
regardless of their spatial preference, with additional excitation.
In the simulation shown in Figure 3b, this causes all PFC R cells to
gradually increase their activity, giving a competitive advantage
to one of the regions of activity in PMd. Once this bias grows
strong enough to cross the quenching threshold, the selected
PMd region dramatically increases its activity, suppressing the
competing region. In the model, this corresponds to the commit-
ment to a decision. When the Go signal is turned on, the PMd
activity is allowed to flow into M1, initiating the movement. This
process is very abrupt in the model, unlike in the data that exhib-
ited a gradual buildup of activity over time. It is possible that such
buildup is related to the anticipation of the occurrence of the Go
signal (Hanes and Schall, 1996; Janssen and Shadlen, 2005),
which may bring the motor system closer to the threshold for

initiating movement. The model does not presently attempt to
simulate this buildup process, nor does it simulate movement-
related activity.

In addition to capturing the major features of delay-period
activity in PMd and PPC, the model also reproduces the rostro-
caudal gradient of activity seen in PMd (Cisek and Kalaska, 2005)
(Fig. 3a). Despite the fact that all of the PMd layers in the model
were reciprocally connected, obeyed the same equations, and had
the same parameters and intralayer interactions, their patterns of
activity showed clear differences. The top PMd layer showed
strong bimodal activity during the SC period of the 2-T task. This
bimodal activity was progressively weaker in the downstream
layers (Fig. 3b). Simulation of this rostrocaudal trend is the rea-
son why three PMd layers were included in the model.

In the 1-T task, a single SC is presented and the CC provides
no new information. Consequently, only a single population be-
comes active in PMd in both the data (Fig. 3c) and the model (Fig.
3d). There is no response to the presentation of the CC. The
response of a PMd cell to the appearance of a cue in its PD was
lower if another cue was presented elsewhere, and the SC tuning
functions of cells were narrower in the 2-T than the 1-T task
(Cisek and Kalaska, 2005). In the model, both of these phenom-
ena are obtained (Fig. 4) and are reminiscent of observations that
cell activity is lower under conditions of uncertainty (Basso and
Wurtz, 1998; Cisek and Kalaska, 2005). The model does not cur-
rently attempt to simulate the transient overshoot in response to
SC presentation in 2-T and 1-T tasks (Fig. 3a,c).

Figure 5a shows neural activity during the MS task. Although
there was an increase of activity during the CC in this task, the
activity pattern did not become directionally tuned until the SC
was presented. At this point, the PMd population exhibited a
brief bimodal response to both targets, but, within 130 ms, this
response became unimodal and tuned to the correct selected tar-
get (Cisek and Kalaska, 2005). In other words, despite the con-
tinuous presence of two stimuli that were identical to the stimuli
during the SC period of the 2-T task, in the SC period of the MS
task, the PMd response was primarily unimodal (compare Figs.
3a, 5a). The model exhibited similar patterns of activity (Fig. 5b).
In particular, it also showed a brief response to the unselected
target just after the SC, and this was later suppressed by the activ-
ity from the selected target that dominated the SC period.

It is interesting to consider how the model can make errors.
There are many sources of noise in the model, and these can have

Figure 4. Tuning functions during the spatial-cue period of the one-target (dotted line) and
two-target (solid line) tasks, plotted as a polar plot that is aligned to the preferred direction of
each cell. A, Average tuning function of cells in rostral PMd (Cisek and Kalaska, 2005). B, Tuning
functions from the PMd1 model population.
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a particularly strong influence during the
SC period of the 2-T task, when two re-
gions of activity are competing against
each other. The quenching dynamics de-
scribed above help the model to resist that
noise, but they cannot eliminate it com-
pletely. In some cases, random fluctuations
of activity can accumulate enough such that
one of the PMd peaks crosses the quenching
threshold before the CC, possibly causing
the wrong target to be selected. Figure 5d
shows an example of a simulation of the 2-T
task (using the same parameters and inputs
as that of Fig. 3b) in which noise happened to
unbalance the competition such that the in-
correct target was selected. It is interesting to
note that, when neural data from 2-T error
trials was analyzed, PMd activity also tended
to exhibit a strong bias in favor of the incor-
rect target before the CC (Cisek and Kalaska,
2005) (Fig. 5c). This suggests that decision-
making errors in the brain may sometimes
be caused by a similar unfortuitous biasing
of a competition between options. In the
model, the bias is attributable entirely to
noise, although in the brain, there are many
other factors that can contribute to biases
and errors.

Simulations of behavioral phenomena
In addition to reproducing many features
of neural activity during reach-decision
tasks, the model was used to simulate im-
portant psychophysical results on the spa-
tial and temporal statistics of human mo-
tor decisions. For example, Ghez et al.
(1997) presented human subjects with sev-
eral choices of reach targets and asked
them to begin moving at the end of a
countdown of auditory cues. The correct
target for the reach was indicated only a
short time before that final Go signal, giv-
ing the subjects little time to respond to the
cue and compelling them to prepare for
movement, and possibly for several move-
ments, in advance. When the interval be-
tween the choice cue and initiation of move-
ment stimulus-response (SR) interval was
�80 ms, an interesting phenomenon was
seen: if the targets were �60° apart, subjects
chose them randomly; if the targets were
closer together, subjects initially moved be-
tween them. This suggests that human plan-
ning may use a continuous mode when
targets are close and a discrete mode
when targets are far apart (Ghez et al.,
1997). These modes of operation can occur at the same time
when there are several targets present, some close to each other
and some far apart (Favilla, 1997). The model suggests how
both of these modes of operation are emergent properties of a
single underlying mechanism (as also proposed by Erlhagen
and Schöner, 2002).

If targets are close together, then the peaks of activity they
produce will coalesce into a single broad plateau because of pos-
itive feedback between cells with similar PDs (Fig. 6a). If the Go
signal is given quickly, then activity will be allowed to grow in M1,
producing a peak of activity that tends to be between the targets
(Fig. 6a, left). If the incorrect target vanishes long before the Go

Figure 5. Simulation of the matching task and two-target task errors. A, Neural data from PMd of two monkeys performing the
matching task (Cisek and Kalaska, 2005), with same format as in Figure 3A. B, Simulation of the matching task. In the simulation,
a uniform excitation was given to the red-preferring PFC population (CC; 1st black line), followed by presentation of the two
targets (SC; 2nd black line). C, Neural data from PMd during trials in which the monkeys made an error in the two-target task,
ultimately moving to the wrong target. D, A simulation of the two-target task, with parameters and inputs identical to those in
Figure 3B. In this run of the simulation, noise caused the model to make an error and select the wrong target.
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signal is given, then this peak will have time to shift toward the
correct target (Fig. 6a, right). If the targets are farther apart, then
they will generate distinct competing peaks (Fig. 6b). In this case,
if the Go signal is given before the correct peak can gain a sub-
stantial advantage in this competition, then activity will be al-
lowed to grow in M1. The strong winner-take-all dynamics of
M1, which influence PMd through reciprocal connections, will
force the selection of whichever peak happened to fluctuate
higher at the time. This will produce errors 50% of the time.
Figure 6c shows the distribution of initial directions produced by
human subjects performing an isometric version of the task. As
shown in Figure 6d, when the model was simulated under similar
conditions, the distributions of initial directions (indicated by the
location of the initial peak of M1 activity) showed similar general
trends.

Figure 7 shows simulations of two key
findings regarding RTs during decision
tasks. First, because the rate at which
model PFC cells accumulate activity is de-
pendent on the magnitude of the decision
cue and on noise, the model reproduces a
key result on the distributions of reaction
times: weaker cues result in later and
broader distributions than stronger cues
(Fig. 7a). Although this is not a novel re-
sult, it shows that the model is compatible
in an important way with a variety of
accumulation-to-threshold models (Ma-
zurek et al., 2003; Ratcliff et al., 2003;
Reddi et al., 2003; Smith and Ratcliff,
2004) that have been used to explain data
on RT distributions in saccadic decision
tasks (see Discussion).

Second, the present model also simu-
lates a phenomenon that cannot be ex-
plained by models of decision making that
use discrete units to represent the choices.
It is well known that reaction times in
choice tasks increase with the number of
cues. These findings are compatible with
many models of decision making (Shafir
and Tversky, 1995; Roe et al., 2001; Usher
and McClelland, 2001). However, Bock
and Eversheim (2000) showed that it is not
the number of cues that determines RTs
but rather the spatial angle that they sub-
tend. In other words, the RT is the same
whether two or three targets span a given
angle. However, if two targets are placed
closer together, then the RT is shorter than
if those two targets are far apart. Figure 7b
shows the average RT from model simula-
tions in four conditions: three cues span-
ning a large angle; two cues spanning that
same large angle; two cues spanning a
small angle; and no cues at all. This simu-
lation qualitatively reproduces the result
shown in Figure 3 of Bock and Eversheim
(2000). The present model reproduces this
result because reaction time is determined
by the level of activity in a distributed pop-
ulation, and this is itself dependent not
only on the number of targets but also on

the angle subtended by the directions of the movements toward
them.

Discussion
The model presented here illustrates how a distributed network
can solve two conceptually distinct but functionally related prob-
lems: specifying metrically related response options and selecting
between them. Traditionally, these have been viewed as separate
problems, and models addressing them have been developed pri-
marily in isolation. However, neural data does not support a rigid
separation between planning and decision making (Platt and
Glimcher, 1999; Gold and Shadlen, 2000; Hoshi et al., 2000;
Romo et al., 2004; Cisek and Kalaska, 2005), suggesting instead
that these functions are performed by a unified mechanism.

The mechanism used here involves a distributed neural rep-

Figure 6. Spatial distribution of reaching choices. A, Simulated activity from PMd1 when two nearby targets appear (1st black
line) and then vanish (2nd black line), and then the red target is flashed (cue; 3rd black line) shortly before the Go signal (4th black
line). On the left is a trial in which the cue appears 20 ms before the Go signal, and on the right, a trial in which the cue is presented
300 ms before the Go signal. B, Same as A, except with targets farther apart. C, Distribution of initial reach directions of humans in
an isometric variant of the timed-response task (Ghez et al., 1997) for two different target separations and three different SR
intervals. Solid line, Correct direction; dotted line, wrong direction. D, Distribution of the location of the first peak in M1 during
simulations of the timed-response task, also for two target separations, and three SR intervals.
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resentation within which movement options are defined and
compete against each other. This representation does not explic-
itly encode any specific perceptual, cognitive, or motor variable
but rather reflects a functionally motivated mixture of many such
variables. It therefore suggests a way of interpreting neural data
that is otherwise difficult to account for in terms of pure vari-
ables, such as the observation that LIP activity correlates with
many sensory, motor, and cognitive variables (Snyder et al., 1997;
Platt and Glimcher, 1999; Kusunoki et al., 2000). For example,
during the MS task, PMd activity first briefly represents both
potential actions and then quickly changes to simply reflect the
planned action (Fig. 5a,b, just after the SC). Similar results are
often reported in other brain regions (Thompson et al., 1996;
Platt and Glimcher, 1997; Schall and Bichot, 1998; Fadiga et al.,
2000). One might be tempted to describe the initial response as a
sensory representation of targets and later activity as a represen-
tation of a plan. However, at least in the context of the model,
both responses serve the same role of specifying and selecting
potential actions, and forcing them into “sensory” or “motor”
categories would be inappropriate. One may view much of corti-
cal activity in terms of two temporal waves of processing spread-
ing across the cerebral cortex: early activity sensitive to spatial
information specifying potential actions, followed by modula-

tion of this activity by factors such as attention and decision
making. Neurophysiological studies suggest that the early wave
engages cortical activity in 40 –100 ms, whereas the modulation
appears after another 50 ms (Thompson et al., 1996; Cisek and
Kalaska, 2005).

Because the model addresses questions on both planning and
decision making, it relates to a number of previous models of
both processes. For instance, it shares features with a class of
theories called “sequential sampling models,” which suggest that
decision making involves the gradual accumulation of informa-
tion about given choices until a threshold is reached (Roe et al.,
2001; Usher and McClelland, 2001; Mazurek et al., 2003; Reddi et
al., 2003; Smith and Ratcliff, 2004). The present model also makes
use of a gradual integration process and therefore behaves very
much like sequential sampling models (Fig. 7a). However, it dif-
fers from those models in two important ways. First, sequential
sampling models usually posit a stage of processing at which
activities accumulated in favor of the choices are compared to
make the decision. For example, the Mazurek et al. (2003) model
suggests that neurons in the middle temporal area represent cur-
rent sensory evidence that is accumulated by neurons in LIP and
the accumulated activity finally compared by some decision area.
In contrast, in the present model, the decision is made through a
transition to winner-take-all dynamics within the same popula-
tion that represents the choices. In this sense, the present model is
more like those of Wang (2002) and Machens et al. (2005), which
propose that the decision-making process occurs between mutu-
ally competing cells and which also demonstrate the functional
value of mixed representations.

Second, and more significantly, the present theory differs
from other decision-making theories in that those models as-
sume discrete populations of neurons assigned to each of the
options among which decisions are made. The question of where
those representations come from is not addressed. In contrast,
the present model describes how distinct options can emerge
within a distributed neural population on the basis of sensory
input and then, once they are defined, to compete against each
other for execution. It is because of this distributed representa-
tion that the model is able to reproduce the spatial distribution of
choices reported by Ghez et al. (1997) and the reaction time
phenomenon of Bock and Eckmiller (2000). The present model
proposes that both the definition of the options and the selection
between them is produced by the same mechanism: lateral inter-
actions between cells encoding potential parameters of move-
ment. In this sense, it is similar to the decision field theory of
Erlhagen and Schöner (2002) and the attention model of Tipper
et al. (2000). The model thus proposes a link between theories of
decision making, such as the sequential sampling models, and
theories of movement parameter planning in distributed
populations.

Predictions
Because the model is phrased in terms of particular neural pop-
ulations in the primate brain, it can be used to generate specific
predictions regarding cell activity. Here, we focus on predictions
that test some of the core ideas of the model.

The model suggests that, in many anatomically diverse corti-
cal regions, cells tuned to particular spatial parameters will vary
their activity in relation to almost any factor that influences de-
cision making, whether or not those factors are formally optimal
for decision making in the given context. These factors include
formal “decision variables” such as probability and size of reward
(i.e., “expected value”) as already documented in the oculomotor

Figure 7. Simulations of timing phenomena. A, Distributions of decision latencies produced
by the model in the 2-T task with two different magnitudes (M) of the color cue. These latencies
were calculated by finding the first time step, after the color cue, at which the PMd1 population
crossed an activity threshold of 1.5. B, Reaction time (mean and SE) during four conditions (from
left to right): when three cues are presented 80° apart (i.e., spanning 160°) 0.8 s before the
target, when two cues are presented 160° apart, when two cues are presented 80° apart, and
when no cues are presented until the target and GO signal are given.
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system (Platt and Glimcher, 1999; Glimcher, 2003), as well as
with related variables such as local income (Sugrue et al., 2004),
hazard rate (Janssen and Shadlen, 2005), and relative subjective
desirability (Dorris and Glimcher, 2004). The model predicts
similar effects in regions involved in many other kinds of
movements.

Furthermore, the model predicts that, in all cases of frontopa-
rietal activity modulated by decision variables, the effects of these
factors should be predominantly relative. In other words, even if
a decision variable (e.g., expected value) for a given option is held
constant, the activity associated with that option will be modu-
lated by decision variables related to other options. This is con-
sistent with effects reported for PMd (Roesch and Olson, 2004)
and predicts that similar effects will be seen elsewhere.

One particularly novel prediction is that the relative effects of
decision variables should be influenced by the distance between
the movement choices. This effect is related to the interaction
function (Fig. 1b), which defines how cells with different param-
eter preferences influence each other in the population. In other
words, even if all decision variables are kept constant, the activity
associated with each potential action will vary if the distance be-
tween the actions changes.

Because it gives premotor regions an important role in deci-
sion making, the model suggests that reversible inactivation of
these regions will result in poor performance in reach-decision
tasks. This has already been demonstrated by Schieber (2000),
who showed that, when monkeys were presented two food mor-
sels, unilateral inactivation of premotor cortex biased their re-
sponses away from the contralateral side. The model predicts that
more specific biases can be introduced by microstimulation in
the premotor cortex, as has been shown in the oculomotor system
(Carello and Krauzlis, 2004).

Finally, the model predicts that there is no rigid temporal
sequence in which decisions emerge in cortex. Each population in
the frontoparietal network is proposed to involve competitive
interactions, and biasing influences can modulate that competi-
tion in different places. These biases need not always agree, and
the final decision will be determined by a distributed consensus
over a large cortical area. Because corticocortical connections are
bidirectional, if a decision begins to emerge in one region, then it
will propagate outward to other regions. Presently, the model
only includes a single site of biasing (PMd biased by PFC input),
but it is also possible to send biasing influences to PPC. If a bias
were introduced in PPC, then the decision would first be resolved
there and propagate forward to PMd. In other words, the model
predicts that the temporal sequence in which the frontoparietal
system converges to a consensus will be task dependent. For ex-
ample, decisions based on sensory features such as stimulus sa-
lience may first appear in parietal cortex and then influence fron-
tal activity, whereas decisions based on abstract rules may first be
expressed in frontal regions (Wallis and Miller, 2003) and prop-
agate back to PPC.

Conclusions
The model presented here suggests that interaction with the en-
vironment involves a continuous process of transforming spatial
sensory information to specify and update the parameters of po-
tential actions. This is analogous to the proposal that part of
perception is the interpretation of sensory information in terms
of actions made possible by the environment and the animal’s
place within it (Gibson, 1979; Fadiga et al., 2000). Multiple po-
tential actions available at a given time are specified simulta-
neously along the sensorimotor continuum and constantly com-

pete for additional processing and overt execution. Action
selection in this broad sense encompasses phenomena such as
spatial attention, contextual modulation, and decision making.
In fact, this perspective suggests that the pragmatic sensorimotor
concerns of action selection and action specification were the
original context within which many of our advanced cognitive
abilities evolved (Cisek, 2001; Cisek and Kalaska, 2001; Hommel
et al., 2001).
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