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Supplemental Material 

Modeling approach 

In any modeling effort, one is faced with a tradeoff between tractability and physiological realism. The 
model presented below is aimed at implementing the hypotheses described in the main text at a level of 
detail just sufficient to capture the neurophysiological and behavioral phenomena of interest. These 
phenomena include response patterns over populations of cells in specific regions of the cerebral cortex, but 
do not include the precise spiking behavior of individual cell types in individual cortical layers. Thus, neural 
activity is represented simply as average firing rates (as opposed to membrane potentials or spikes), which 
rise and fall as non-linear functions of excitation, inhibition, and noise. Each cortical region is implemented 
as a homogeneous population of neurons which differ only in terms of directional tuning and in terms of 
random variations of weight parameters. However, despite this abstract representation of individual neurons, 
the model is able to generate patterns of activity which capture many of the features of real cortical 
activation and to make predictions about how cells in specific regions will respond under novel experimental 
conditions. 

The model focuses primarily on the dynamics of neural activity in dorsal premotor and posterior 
parietal cortex, and simplifies many details of the dynamics of activity outside those emphasized regions. For 
example, no visual processing is included in the model, and we simply assume that potential target directions 
are presented to PPC as input. We also do not address the question of the coordinate system used by each 
region and for simplicity encode everything as a spatial direction. Likewise, the dynamics of prefrontal 
processing is significantly simplified. We do not simulate or address how the prefrontal cortex learns to 
detect relevant stimulus information and to combine that with a cognitive knowledge of the task at hand – we 
simply assume that PFC cells receive the correct information as input. We implement the gradual 
accumulation of sensory evidence in PFC cells in an “ad-hoc” manner by simply by giving them the 
dynamics of leaky-integrators with a slow time constant. Future modeling work may expand these 
abstractions to produce a more realistic picture of real prefrontal processing. For example, gradual 
integration may be accomplished by replacing the slow PFC time constant with a network of neurons with 
positive feedback made robust to noise using bistable dendrites (Goldman et al., 2003), and maintenance of a 
stable working memory in PFC may be implemented via recurrent synaptic interactions and more detailed 
cellular properties (Compte et al., 2000). However, a detailed model of prefrontal processing is not the object 
of the present study. The goal of the present modeling work is more humble – to implement the hypotheses 
described in the main text through a set of mathematical equations which allow us to test specific predictions 
in more detail than is possible without a formal model. 
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Mathematical methods 

The model was implemented as a dynamical system describing mean-rate leaky-integrator neurons 
arranged in seven layers of 90 units each. Following Grossberg (1968;1973), each neuron was governed by 
the following non-linear differential equation: 
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where  is the activity of the ith neuron of a given layer L, L
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i  is the change in that activity over 

time,  is the excitatory input to the neuron,  is the inhibitory input, α is the decay rate, β is the 
neuron’s maximum activity, and γ is the excitatory gain. Noise Θ was modeled as Gaussian noise with mean 
0 and variance η. The output of each neuron was thresholded such that 
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where [w]+ is defined as max(w,0). 
Every neuron in the model obeyed the dynamics of equation (1). Most neurons used the same 

parameters: α = 3, β = 2, γ = 6, η = 0.1, and Γ = 0.1. The exceptions were as follows: PPC neurons used 
ΓPPC = 0.5, and PFC neurons used αPFC = 0.01, βPFC = 4, γPFC = 0.1, η = 0.15, and ΓPFC = 0.2. Importantly, 
these values gave PFC neurons slower growth and decay dynamics in relation to PPC and PMd neurons (see 
above for justification of this simplified approach). 

The behavior of individual model layers was distinguished by the pattern of connections with other 
layers in the network, expressed through the excitation and inhibition terms. 

For PPC, these terms were defined as follows: 
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where  is the output of the jth cell in the top PMd layer, is the synaptic weight between the 
jth unit in PMd and the ith unit in PPC, KE and KI are the excitatory and inhibitory kernels representing the 
lateral connections between cells within the layer (see below), and g(w) is a transfer function describing how 
activity of one PPC cell affects the activity of another (See Figure S1). The term  is the visual input to 
PPC, which is equal to the magnitude of visual input at the ith unit’s preferred location. The superscript N 
denotes that visual input to PPC is not category selective. 
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Equations (2) state that PPC cells are excited by visual input, feedback from PMd, and lateral 
excitation within PPC, and inhibited by lateral inhibition within PPC. The connection weights  

were hard-wired such that =0.4 for j=i, and then fell off linearly to reach zero when |j-i| > 2. The 
weights were then randomized with 1% Gaussian noise. 
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The lateral interaction kernel was defined as a Difference-of-Gaussians function 
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Additional randomness was introduced into the model by modifying each layer’s kernel of interactions 
with 20% Gaussian noise. The kernel parameters were set at κ = 1.75, ρ = 0.25, σ = 0.1. The lateral 
interactions implemented through this kernel “wrapped-around” in each layer from one edge to the other, in 
order to capture the inherent circular nature of directional tuning. 

The PFC was implemented as two separate groups of 90 cells, each of which was selective for a 
particular category C. Although for display purposes these cells were sorted by their preferred location, there 
were no lateral interactions between them, and thus no topology. Therefore, they could be arranged in any 
arbitrary and even random organization. PFC excitation and inhibition were defined as: 
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where is the magnitude of visual input corresponding to the neuron’s preferred category C near location i 
within a distance of 10 units. Hence PFC neurons have very low spatial resolution. The inhibitory term states 
that PFC neurons with different category preferences inhibit each other with =0.1 when j=i. As 
described above, these equations implement a signal which resembles the behavior of PFC (Kim and 
Shadlen, 1999) but should not be construed as hypotheses on how the PFC computes that signal. 

C
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jiw

The dorsal premotor cortex was simulated as a set of three layers of 90 cells each, which had the 
following excitation and inhibition functions: 
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where all the weights wji between layers were hard-wired such that wji =0.2 for j=i, and then fell off linearly 
to zero when |j-i| > 2 (again with 1% Gaussian noise), and the kernel of interactions was defined as in (3). 

Two observations can be made regarding equations (5-7). First, each PMd layer receives excitatory 
input from the layer upstream as well as from the layer downstream. All of these are connected through 
similar weight matrices with one important exception. The excitation that the uppermost layer of PMd 
receives from PPC is multiplicatively modulated by input from PFC. This modulation was defined as: 
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The weights were such that =0.15 when j=i and fell off linearly to reach zero when |j-i| > 
10. This means that the resolution of projections from PFC to PMd1 was very low, as low as the spatial 
resolution of visual input to PFC (

PMdPFC
jiw →

4). 
The reason for the multiplicative interaction is to prevent PFC cells from exciting PMd1 on their own 

in the absence of PPC activity. However, PPC can on its own excite PMd1, even without PFC input, because 
the parameter ω was set at 0.5. The multiplicative gating of the input to PMd1 expresses the idea that PFC 
can bias the competition in PMd. While it is consistent with a number of reports of multiplicative 
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interactions between variables encoded in the firing of cortical cells (Andersen, 1995;Kalaska et al., 1989), it 
is not proposed as a specific hypothesis of a particular mechanism at the level of individual synapses.  

The second observation regarding equations (5-7) is that the lateral interactions between cells within 
each PMd layer are determined not only by the kernel K but also by an interaction function f(), defined as: 
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This function is the sigmoidal transfer function shown in Figure 1c. It implements the quenching 
dynamics described in the text, because as a cell’s activity gets large, it begins to exert more and more 
excitation on its neighbors and more and more inhibition on the rest of the layer. The precise functional form 
of f() is not critical as long as it contains a faster-than-linear portion for large values of x. See Grossberg 
(1973) for further discussion and proofs concerning the dynamics of a general class of non-linear recurrent 
networks of which this is a special case. 

The excitation and inhibition of primary motor cortex was defined as: 
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In other words, M1 cells are excited by output from the bottom layer of PMd whenever the GO signal 
is above zero. The multiplicative gating of the excitatory input to M1, like the multiplicative gating of the 
PPC input to PMd, is simply mathematical shorthand for the idea that activation of M1 and the initiation of 
movement can be decoupled from activity in upstream brain regions (Bullock and Grossberg, 1988;Bullock 
et al., 1998). 

Individual cells in M1 also engage in strong lateral interactions which are governed by a faster-than-
linear function (2nd power). These strong lateral interactions cause M1 to exhibit strong winner-take-all 
dynamics, which force a choice any time distinct peaks of activity appear. 
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Figure S1. The lateral influence of a cell on neighboring cells in the same population as a function of 
current activity. 

Parametric sensitivity 

A numerical analysis of parameter sensitivity was conducted using an iterative random walk 
procedure through the space of ten of the model’s parameters: α, β, γ, κ, ρ, σ, ω, , , . 
In each iteration, one of the parameters was randomly varied to either increase or decrease, and a simulation 
of the 2-target task was performed. If the model performed well (according to the criterion defined below), 
then a new iteration was performed. If the model did not perform well, then the changed parameter was 
returned to its previous value and a different parameter change was attempted. After 20 consecutive failures 
the procedure the model was considered to have reached a “dead-end” in parameter space and was re-
initialized from a new starting position. This procedure was run for 10000 simulations of the 2-target task. 

w PMdPPCw ↔ PMdPFCw →
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Performance in each simulation was evaluated using the following function: 
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The first two terms of this function evaluate the strength of bimodal activity in PMd1 at the time the 
color cue is presented tCC, and the third term evaluates how well the model chose the correct target by the 
time of the GO signal tGO. Each term in the product is normalized, yielding a function P which measures 
performance on a positive scale. The criterion for successful performance was P > 0.1. 

This procedure found that the model has a large region within the tested parameter space in which it 

performs adequately. Of the 10,000 simulations which were run, 5719 met the criterion for success and a 
dead-end was reached only 11 times during these simulations. As shown in Table S1, the range of values of 
each parameter for which successful performance was obtained was large and for most parameters spanned 
one or two orders of magnitude. In conclusion, the analysis shows that the model is robust and not dependent 
on precise fine-tuning of each parameter. 

Parameter Symbol Start Minimum Maximum 

Decay rate α 3.00 0.12 5.90 

Maximum activity β 2.00 0.50 3.82 

Excitatory gain γ 6.00 0.25 10.69 

Kernel gain κ 1.75 0.53 4.91 

Kernel baseline ρ 0.25 0.018 0.52 

Kernel width scale σ 0.10 0.057 0.66 

PFC→PMd baseline ω 0.50 0.011 0.95 

Weights (mean) w  0.20 0.06 0.61 

PPC↔PMd weights PMdPPCw ↔  0.40 0.12 0.86 

PFC→PMd weights PMdPFCw →  0.15 0.051 0.54 

Table S1: Range of model parameter values for which successful simulations of the 2-target task 
were found during a random-walk of 10,000 steps. 
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