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Making decisions through a distributed consensus
Paul Cisek

How does the brain decide between actions? Is it through

comparisons of abstract representations of outcomes or

through a competition in a sensorimotor map defining the

actions themselves? Here, I review strengths and limitations of

both of these proposals, and suggest that decisions emerge

through a distributed consensus across many levels of

representation.
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Introduction
Great progress has recently been made toward under-

standing the neural mechanisms of decision-making

[1,2,3��,4�,5��,6,7�,8��,9,10]. However, despite many

reports showing how neural activity in different brain

regions correlates with expected rewards, action values,

and other relevant variables, there is still no agreement

about the functional architecture that underlies decision-

making. We have substantial data on the elements of the

system, but are only beginning to glimpse its shape. Here,

I focus on just one outstanding question: do we make

decisions among abstract representations of outcomes, a

sensorimotor space of actions, or through a distributed

consensus across many levels?

Classic studies in cognitive psychology suggested the

existence of a central executive system [11,12] that

resides in the frontal lobes [13,14] and is separate from

sensorimotor control [15,16]. However, in apparent con-

flict with this classic centralized view, neural activities

related to decision-making are widely distributed and

appear even in cortical and subcortical regions tradition-

ally implicated in sensorimotor control [4�,9,17–21,22�].
This has led to suggestions that the brain simultaneously

prepares multiple actions [23,24] and decides between

them through a competition taking place within the

sensorimotor system itself [1,2,3��,4�,25,26].

Of course, we are capable of making decisions that have

nothing to do with actions, and in such situations the

decision must be abstract. That is not at question. What is

at question is how we decide between actions. For

example, when choosing between reaching for an apple

versus an orange, the brain may compute the subjective

value of each offer, pick a winner, and then prepare the

appropriate reaching plan [5��] (Figure 1A). Alternatively,

both potential reaching actions could be simultaneously

represented in the brain and compete against each other,

and this competition could be biased by a variety of

factors including the subjective value of each offer

(Figure 1B). A third alternative is that competition occurs

at multiple levels in parallel, and the final decision is

achieved through a ‘distributed consensus’ [25]

(Figure 1C). Distinguishing between these alternatives

is not easy, and existing data are still insufficient to make

any final conclusions. Nevertheless, recent experiments

provide some tantalizing food for thought, and the pur-

pose of this review is to discuss these in light of the

plausible architectures shown in Figure 1. Here, I will

focus primarily on neurophysiological studies in non-

human primates, making the explicit assumption that

the mechanisms discussed here are ones we share with

our evolutionary cousins.

Decisions between goods
Economic theories suggest that humans make decisions

between different goods by integrating all relevant factors

(expected gains, potential risks, action costs, etc.) into a

single variable capturing the subjective value of each offer

[27]. Neurophysiological studies have suggested that this

variable is encoded in the orbitofrontal cortex (OFC) and

ventromedial prefrontal cortex (vmPFC) [5��,7�,10,28]. In

particular, neural activity in OFC correlates with the value

of an option independent of other options [29], and adjusts

its gain to reflect the full range of values presented in a

given block of trials [30]. This is consistent with the ‘good-

based model’ [5��], summarized in Figure 1A. In the

model, all factors relevant for a choosing an offer are

integrated in the OFC and vmPFC, and these are com-

pared and the largest one is chosen. Next, the appropriate

action plan is computed to produce the required move-

ment. This model satisfies our subjective intuition about

decisions: when choosing to reach for an orange, I think

about the orange and not about muscles.

However, despite the intuitive appeal of the good-based

model [5��], it leaves open several important questions.
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First, it predicts that motor planning begins only after

decisions are made. However, many studies have shown

that neurons in sensorimotor regions represent multiple

potential targets and actions long before the animal

decides between them [4�,20,21,22�,24,31–35,36�]. It

has been argued that these representations are not ‘gen-

uinely motor’ and instead related to attention or arousal

[5��,37], but that argument is difficult to reconcile with

behavioral results. For example, the spatial aspects of

trajectories in a variety of reach [36�,38–40,41�,42,43] and

saccade tasks [44] are influenced by the presence of

multiple potential targets (e.g. Figure 2A). A simple

explanation is that the brain begins to plan the different

candidate actions simultaneously before deciding be-

tween them, but does not always completely suppress

unselected actions before movement onset [38,45,46].

Second, it is unclear how the brain could compute action

costs if it did not have at least some representation of

those potential actions. Our choices are remarkably sen-

sitive to action costs. For example, we recently showed

that when humans were asked to freely choose between

two reaching actions whose value was equal, they strongly

preferred the one that was biomechanically easier to

perform [47��] (Figure 2B). Importantly, these move-

ments had similar launching costs and differed in cost

only upon approach to each target. This implies that the

brain had to have information about the future biome-

chanical costs of both movements, before deciding be-

tween them, in order to select the easier one. It is hard to

imagine how a calculation of such subtle action costs

could be accomplished without at least some representa-

tion of the actions themselves existing in the brain before

the decision was made.

Third, the good-based model does not explain why neural

activity in sensorimotor regions is modulated by decision

variables. In particular, neural activity related to an action

tends to be stronger if the action is more likely or yields

higher rewards. As reviewed in detail elsewhere

[1,2,3��,9,19–21], such modulation has now been consist-

ently observed in parietal, frontal, and subcortical com-

ponents of both the oculomotor and skeletomotor

systems, including the human primary motor cortex

[48�]. Recently, it was even demonstrated at the level

of reflexes. Selen et al. [49��] showed that as human

subjects make perceptual judgments about visual motion

direction, the gain of the mid-latency reflex of the report-

ing arm is stronger as the quality of visual motion

increases, as if the decision process changes the arm’s

preparatory state at the corticospinal level.

To be fair, the above observations do not invalidate the

good-based model. The model could address all of these
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Three possible schemes for deciding between actions. In each, the red box emphasizes where decisions are made and arrows represent excitation

and inhibition whose strength is indicated by line thickness. (A) A good-based model, in which decisions are made by comparing representations of

offer values. (B) An action-based model, in which decisions are made through a biased competition between action representations. (C) A distributed

consensus model, in which decisions are made through competition at multiple levels of representation. The diagram depicts a particular situation in

which stimulus values favor action 1 but action costs favor action 2, and the conflict is resolved in favor of the low cost action.
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results if it allowed the processing of potential actions

before the decision, in parallel with the evaluation of

goods. Such pre-emptive planning could be useful for

computing action costs and for preparing the sensorimotor

system for the most likely movements, but may not

necessarily be causally involved in determining which

decision is made. In other words, the choice could still be

made among abstract representations of goods, separate

from sensorimotor control. But is such separation desir-

able from an ecological perspective?

Decisions between actions
The good-based model follows the classic tradition of

cognitive psychology, in which the cognitive system

responsible for decisions is separate from the sensorimotor

systems that implement its commands [15,16]. This strict

Decisions through a distributed consensus Cisek 929
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(A) Average reach trajectories during a rapid reaching choice experiment [41�]. Left and middle: When two targets were shown (blue and red traces),

reach trajectories deviated significantly from the single-target average (green or black traces) in a manner biased by target distance. Right: The bias

was also affected by the number of targets on the right or left. (B) In this experiment [47��], subjects were asked to choose between two opposite

planar reaching movements, in four configurations shown on the left. Each movement started from a central circle, passed through a ‘via-point’ (red)

and arrived at a target (blue). In each of the configurations, the ‘Major’ target was placed such that the hand would arrive in it along the major axis of

biomechanical mobility (dashed ellipse, not shown to subjects), which requires less effort, while arrival at the ‘Minor’ target would be along the minor

axis, requiring more effort. The right panel shows the proportion of trials in which subjects chose target 1 as a function of the relative distance of the

path to target 1 versus the path to target 2 (negative numbers mean target 1 is closer). Subjects tended to prefer shorter movements, but exhibited a

strong and significant bias for the Major (lower effort) target, as evidenced by the separation of the choice preference curves when T1 was the Major

(solid) or Minor (dashed) target, for both sagittal and transverse orientations.
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division is well-suited to the problem-solving tasks usually

addressed by cognitive psychologists, in which the relevant

contingencies are purely abstract. However, the brain

evolved to support natural behaviors that are very different

than the kinds of situations tested in psychological exper-

iments. For example, during foraging behavior, choices

between simultaneously offered goods are relatively rare

and foraging is instead dominated by sequential choices

between exploiting nearby resources versus exploring else-

where. For such situations, classic economic policies are

less effective than the context-dependent valuation

policies that animals actually use [50��].

In the natural environment, decisions between simul-

taneous options are usually associated with particular

actions, whose metrics are specified by geometric infor-

mation picked-up by the sensors. Furthermore, unlike the

individual trials of psychological experiments, in which a

stimulus is presented before a response, in most natural

circumstances new opportunities and dangers constantly

present themselves, even during ongoing actions. Consider

the situations depicted in Figure 3. A predator may be

initially faced with two potentially valuable pursuit actions,

but as soon as the chase begins both the metrics of the

actions themselves and estimates of their relative value will

change continuously, and sometimes what was a single

option can split into two (Figure 3A). This demands that

animals engage in sensorimotor control in parallel with

evaluating alternative options. Furthermore, how decisions

are made between actions is strongly dependent upon their

geometric relationships. For example, consider an animal

seeking to escape a predator (Figure 3B). If faced with two

opposite escape routes it must make an immediate all-or-

none decision (top). However, if potential escape routes are

similar then the best strategy may be to not discard either

option but mix them and delay making the choice to the

last moment (bottom), when more information may be

available. These are the kinds of problems for which brains

have evolved, in which the spatial metrics of potential

actions and the geometry of the environment are among

the most relevant contingencies influencing what is the best

choice at any given moment.

The challenges of a continuously changing environment

demanded the evolution of a functional architecture in

which the mechanisms specifying possible actions and

those which evaluate how to select between them can

operate in parallel. The ‘affordance competition hypoth-

esis’ [3��,25] suggests that for visually guided behavior,

multiple actions are specified in parallel as regions of

activity in sensorimotor maps within fronto-parietal cor-

tex, and engage in a competition that is biased by infor-

mation from other regions. The biasing can use many

sources of information, including stimulus value repres-

entations from OFC and vmPFC [5��,51,52��], action

value representations from anterior cingulate cortex

930 Decision making

Figure 3
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Schematic decision-making scenarios during natural behavior. (A) The environment around the lion provides information on both the spatial metrics

and relative values of potential pursuit actions (arrows, with value indicated by width). During ongoing activity, this information is constantly changing

and what was once a single action may sometimes split into two (bottom). (B) When faced with two opposite escape routes (top), the zebra must make

an all-or-none decision, but when the escape routes are similar (bottom), it may mix them initially and veer toward one or the other in-flight (see

Figure 2A).
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(ACC) [51,52��,53,54��], context-dependent rule repres-

entations from lateral prefrontal cortex [6,10,55,56], and

predictions of reward from the basal ganglia [57].

Figure 1B summarizes such ‘action-based’ models [45]. A

common currency for computing offer values is still

important, but these signals are not directly compared

in the abstract space of goods. Instead, they are just one of

several sources of bias influencing a competition that

takes place within a representation of potential actions.

This allows action costs to be estimated and to influence

decisions, and explains why neural activity in motor

structures is modulated by decision variables.

How can we establish whether sensorimotor structures

are causally involved in decisions? One approach is to

perturb the system through microstimulation or inacti-

vation, as done in the superior colliculus (SC) (see [4�] for

review). For example, McPeek and Keller [58] showed

that after inactivation of the deeper intermediate layers of

Decisions through a distributed consensus Cisek 931

Figure 4
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(A) An experiment testing the effects of SC inactivation on saccade selection [58]. Left: In a saccadic visual search task, inactivation caused monkeys

to make more errors when the oddball stimulus was placed in the affected location. Right: However, when a single target was present, saccades were

only mildly affected. (B) An experiment testing the effects of sensorimotor contingencies on decision-related neural activity in PMd [62��]. Monkeys

were presented with one or two reach targets whose value was indicated by the border style (inset). In the two-target task, free choice and forced

choice trials (in which one target disappeared at the time of the GO signal) were randomly interleaved, but here we focus only on activity before the GO.

(C) Neural activity from a PMd cell, aligned on target onset, from trials in which a target was present in the cell’s preferred direction. In the one-target

(1T) task (1st column), the cell showed no modulation with the value of its ‘preferred target’ (PT). However, a strong modulation with PT value appeared

when an ‘other target’ (OT) was present 1208 away and medium-valued (2nd column). Conversely, if we held constant the PT value and varied the value

of the other target (3rd column), activity was inversely related to OT value. In other words, the cell shows a strong modulation with relative reward size.

(D) On the left is shown the mean (and s.e.) activity of three cells (C46, C149, C189) during trials in which the PT was medium-valued and the OT was

low, medium, or high-valued, shown separately for trials in which the targets were 608, 1208, and 1808 apart. Note that the slope of the inverse relation

to OT value was steeper as the targets were moved further apart. This suggests that when selecting between actions that are dissimilar, the gain of

inhibitory interactions is stronger than when selecting between similar actions. On the right is shown a comparison of slopes with 608 versus 1808 for a

population of PMd cells. Dots indicate mean slope and lines indicate standard error.
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SC, monkeys performing a visual search task made fewer

saccades to targets in the affected zone (Figure 4A). A

control task confirmed that this was not simply a motor

deficit, since saccades in a single-target control task were

nearly unaffected. Carello and Krauzlis [59] presented

monkeys with two potential pursuit stimuli and showed

that subthreshold SC microstimulation led them to select

the one contralateral to the stimulation site. Again, this

was not merely a motor effect because the subsequent

pursuit movements were accurate. Similar findings have

been reported in cortex. For example, Schieber [60]

showed that inactivation of ventral premotor cortex

(PMv) caused monkeys to select ipsilateral targets during

a dual target task, and Oliveira et al. [61] showed that

TMS over left parietal cortex biased subjects’ choices in a

hand selection task.

Another way to test the predictions of action-based

models is to analyze how the relationship between poten-

tial movements influences the decisions between them

(e.g. Figure 3B). In a recent experiment [62��], we trained

a monkey to choose between two reach targets whose

reward value was indicated by stimulus cues (Figure 4B).

We found that the activity of directionally tuned cells in

dorsal premotor cortex (PMd) was modulated by the

relative value of potential reach targets – it increased with

the value of the target in a cell’s preferred direction but

decreased with the value of other options (Figure 4C, 2nd

and 3rd columns), and this modulation was completely

absent when only a single target was present (Figure 4B,

1st column). Such relative value encoding in PMd was

predicted by a model in which a competition between

action representations in sensorimotor regions is biased

by absolute value signals coming from elsewhere [45].

Still more important for the present discussion is another

prediction made by that same model – that the strength of

the competition between two targets should be greater

when they are far apart than when they are close together

[45]. As shown in Figure 4D, this was indeed observed. A

PMd cell was inhibited by the value of targets away from

its preferred direction, and the gain of this inhibition was

stronger when the targets were further apart. This is

consistent with the situation depicted in Figure 3B – a

choice between two opposite actions must be all-or-none,

requiring strong mutual inhibition, but a choice between

similar actions can permit a mixture of two movements.

Indeed, when targets were within 608 of each other the

monkey often began reaching in-between them, consist-

ent with earlier human data [41�,42,63]. This supports the

hypothesis that the decision is made within a neural

representation of potential actions, which is sensitive to

sensorimotor contingencies such as the spatial relation-

ship between options. A model of purely economic

choices (more juice vs. less) would not make this predic-

tion because the angle between the reaching actions

(which does not affect the costs of the actions themselves)

is a sensorimotor contingency that does not enter into the

economic equation [5��]. Finally, a follow-up study

showed that the same PMd cells whose activity predicts

choices continue to be involved during movement execu-

tion and predict when a monkey changes his mind in

flight [36�]. Biased competition in sensorimotor maps [45]

explains all of these results as well as the distributions of

reaching choices [42,63] that are difficult to explain with a

purely good-based model.

Nevertheless, an action-based model obviously cannot

explain how we make choices that are not about actions.

When deciding on a house to buy one is presumably not

planning potential movements of opening the door, but

instead is considering cost, space, commuting distance,

and so on. A good-based model appears to be better suited

to these kinds of problems. It is possible that the brain

possesses two systems: one for decisions between actions

and one for more abstract choices, and neurological evi-

dence suggests the former may involve ACC while the

latter involves OFC [54��]. While separate systems are a

possibility, considerations of evolutionary continuity

motivate us to ask how a single system could have evolved

to flexibly deal with both kinds of decisions.

A distributed consensus
Brain evolution is highly conservative, and the basic

anatomical features of the mammalian nervous system

were established many millions of years ago. At that time,

decision-making was almost exclusively about actions,

and could have been supported by the kind of action-

based architecture depicted in Figure 1B. But how could

that architecture have evolved to handle more abstract

kinds of decisions?

In the scheme depicted in Figure 1C, the competition

between actions has been differentiated into two levels.

Activity at the lower level represents specific movements

(reach right vs. reach left) in a sensorimotor space where

they compete through connections whose topology

reflects the geometry of the actions themselves. Activity

at the higher level represents choices in an abstract space

of goals (obtain apple vs. orange) which compete through

connections that reflect their behavioral relationships

(choices between two apples are more similar than

choices between an apple and an orange). These levels

may correspond to progressively more anterior portions of

frontal cortex that process progressively more abstract

information [64�] and are more strongly interconnected

with sensory regions [7�]. The linkage between the levels

need not be one-to-one: a single action can lead to two

goals and many actions can lead to the same goal.

Because the levels are reciprocally connected, they share

the biases that may arrive from a variety of sources, and

gradually arrive at a decision through a ‘distributed

consensus’. For example, when choosing between two

932 Decision making
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different reaching trajectories for obtaining the same piece

of fruit, activity at the upper level is uniform and the

decision is determined at the lower level based on action

costs. By contrast, when deciding between exploiting

nearby resources versus exploring elsewhere, specific

actions are not explicitly defined and the decision is

resolved at the higher level on the basis of available versus

desired goods. Finally, when choosing between two pursuit

actions (Figure 3A), one must weigh high level factors such

as their value (e.g. amount of food) as well as relevant

sensorimotor contingencies (e.g. distance to target). In

such conditions the biases may not be in agreement, but

positive feedback between layers will eventually force a

choice to emerge. For example, Figure 1C depicts a

situation in which stimulus values favor choice 1 but action

costs favor choice 2, creating a conflict that is eventually

resolved in favor of the low cost action.

There is an important distinction between mechanisms

that bias us toward one choice or another, and the mech-

anisms by which we commit. The fact that neural activity

in a brain region is modulated by decision variables does

not imply its role in commitment to a choice. Indeed, a

region that encodes absolute decision variables may be

more involved in computing the relevant biases that influ-

ence competition elsewhere. In the circuits that determine

commitment, we would instead expect activity to reflect

relative decision variables resulting from inhibitory inter-

actions [4�,45]. A prominent model suggests that while the

brain is deciding between actions, commitment occurs

when activity in effector-specific sensorimotor regions

reaches a threshold [18,48�,65–69,70�]. That commitment

to an action should depend on activity in motor-related

regions makes good sense from an ecological perspective:

You can covertly change your mind all you want, but once

you begin to move the consequences of your actions begin

to play out (opponents can predict what you’re going to do,

declined opportunities may be lost, etc.).

Commitment to more abstract decisions may occur at a

higher level, but it may follow similar rules [26]. For

example, Hayden et al. [71��] studied a task inspired by

foraging behavior: Monkeys were faced with a decision

analogous to exploiting a depleting resource in one

‘patch’ versus investing time to switch to a new one. It

was found that on each trial, neurons in ACC fired a burst

that grew as the patch was being depleted, but it was not

simply related to the reward size. Rather, it was related to

the monkey’s exploit-versus-explore decision, reaching a

threshold firing rate on the trial just before the monkey

decided it was time to move on. This finding is consistent

with the idea that ACC may encode higher-level aspects

of an action’s value [53], akin perhaps to the level of goals

(Figure 1C).

The distributed consensus model can be tested using

conflict tasks, in which different decision factors favor

different choices (e.g. high-reward-high-cost versus low-

reward-low-cost actions). The model predicts that in such

situations, regions involved in commitment (red box in

Figure 1C) will always indicate the choice that is made,

but they will do so with different latencies depending on

how the conflict was ultimately resolved. For example, on

trials in which the subject made the high-reward-high-

cost choice, commitment should appear at the upper level

before the lower, but the opposite should be true if the

low-cost-low-reward choice won. By contrast, cells which

provide the relevant biases but which lie outside of the

distributed consensus circuits may not always reflect the

choice that was actually made. Studying such conflict

scenarios could go a long way into shedding light on the

neural architecture that underlies how we commit to a

choice.

Concluding remarks
Although recent studies have made impressive progress at

characterizing how neural activity is related to various

aspects of decision-making, we are still only beginning to

understand how these pieces fit together into a functional

whole. Some theories suggest that decisions (at least

about action) emerge as a competition between repres-

entations of potential actions, while others propose that

all decisions are made in an abstract cognitive repres-

entation. Here, I describe a multi-level model in which

decisions emerge as a consensus distributed among a

variety of representations, some of which are directly

involved in sensorimotor control, and some which deal

with more abstract aspects of behavior.

Of course, how we commit to decisions is only one of

many open questions relevant for a general theory of

decision-making. To date, most research has studied very

constrained laboratory situations in which reward sizes

and probabilities are known, responses are clearly speci-

fied, and time is broken up into a series of familiar

repeating trials. These address only a small subset of

the challenges animals must face to survive in their

complex world. As our theories gradually expand to

address that world, we should not expect them to survive

for long without some major adaptations.
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