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Decisions in Changing Conditions: The Urgency-Gating
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Several widely accepted models of decision making suggest that, during simple decision tasks, neural activity builds up until a threshold
is reached and a decision is made. These models explain error rates and reaction time distributions in a variety of tasks and are supported
by neurophysiological studies showing that neural activity in several cortical and subcortical regions gradually builds up at a rate related
to task difficulty and reaches a relatively constant level of discharge at a time that predicts movement initiation. The mechanism
responsible for this buildup is believed to be related to the temporal integration of sequential samples of sensory information. However,
an alternative mechanism that may explain the neural and behavioral data is one in which the buildup of activity is instead attributable
to a growing signal related to the urgency to respond, which multiplicatively modulates updated estimates of sensory evidence. These
models are difficult to distinguish when, as in previous studies, subjects are presented with constant sensory evidence throughout each
trial. To distinguish the models, we presented human subjects with a task in which evidence changed over the course of each trial. Our
results are more consistent with “urgency gating” than with temporal integration of sensory samples and suggest a simple mechanism for
implementing trade-offs between the speed and accuracy of decisions.

Introduction
Research into the temporal aspects of decision making has pro-
vided support for a class of theories that may be called “se-
quential sampling,” or “bounded integrator” models (Stone,
1960; Laming, 1968; Ratcliff, 1978; Carpenter and Williams,
1995; Usher and McClelland, 2001; Wang, 2002; Mazurek et al.,
2003; Reddi et al., 2003; Smith and Ratcliff, 2004; Wong and
Wang, 2006; Bogacz and Gurney, 2007; Grossberg and Pilly,
2008). According to these models, simple decisions involve the
sequential sampling of the sensory stimulus and temporally inte-
grating the information present in that stimulus until a threshold
(or “bound”) is reached, at which point the decision is taken (see
Fig. 1A). The rate of this integration is related to the quality of
information present in the stimulus in favor of a given choice,
and the threshold is related to motivational factors such as payoff,
risk, and urgency (Reddi and Carpenter, 2000). Several variations
of bounded integrator models exist, and they offer a remarkably
successful account of behavior in simple decision tasks. In partic-
ular, assuming that the rate of integration is subject to variability,
these models can explain error rates and distributions of reaction
times (RTs) in a wide variety of tasks (Ratcliff, 1978; Carpenter
and Williams, 1995; Reddi and Carpenter, 2000; Reddi et al.,
2003; Smith and Ratcliff, 2004). Furthermore, recent neurophys-

iological data on decision tasks have provided evidence for accu-
mulation processes in the superior colliculus (Munoz and Wurtz,
1995; Munoz et al., 2000; Ratcliff et al., 2003, 2007; Shen and Paré,
2007), the lateral intraparietal area (LIP) (Roitman and Shadlen,
2002; Leon and Shadlen, 2003), the frontal eye fields (Gold and
Shadlen, 2000, 2003), and the prefrontal cortex (Kim and
Shadlen, 1999). Finally, integration of samples toward a bound is
reminiscent of the “sequential probability ratio test” (SPRT)
(Wald, 1945; Bogacz et al., 2006), an optimal procedure for mak-
ing decisions on the basis of information that arrives over time
(Wald and Wolfowitz, 1948). Consequently, integrator models
are now widely accepted as an explanatory mechanism for deci-
sion making in many simple tasks.

However, in most of the studies supporting integrator models,
the information presented to subjects varied across trials but was
constant during the course of each trial. As described below, in
such conditions one cannot distinguish whether the buildup ob-
served in neural activity (and inferred from behavioral data) is
caused by temporal integration of sensory information or by a
growing signal related to elapsed time. It is therefore conceivable
that the neural and behavioral data from constant-information
tasks can be explained by an alternative model, in which neural
activity is the product of current stimulus information and a
growing signal related to the urgency for making a choice (see
Fig. 1 B). Although this model, which we call “urgency gating,”
behaves very similarly to integrator models in constant-information
tasks, it proposes a very different mechanism to explain neural
activity and behavior. To distinguish the models, we presented
human subjects with a decision task in which the information
favoring one choice over another changed during each trial.
Some of these results have previously been presented in abstract
form (Puskas et al., 2007; Cisek et al., 2008).
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Materials and Methods
Modeling formalism
Many variations of integrator models exist, but all may be formalized as
follows:

xi(t) � g�
0

t

Ei(�) d�, (1)

where xi(t) is a putative neural variable corresponding to choice i, g is a
scalar gain term, and Ei(�) is some internal estimate of the sensory infor-
mation, present at time �, that constitutes evidence in favor of choice i.
The variable xi starts at some initial level xi(0) related to the previous
probability that choice i is correct and grows over time at a rate related to
the sensory evidence until it hits a threshold T, at which time the subject
commits to choice i. All integrator models share this basic set of assump-
tions. Where they differ is on how they define the evidence function Ei(t)
and on how they determine the time at which the decision is taken (the
“stopping rule”). For example, “independent race” models (Vickers,
1970) suggest that there exist separate variables xi(t) for each option, each
of which independently accumulates an estimate Ei(t) that is computed
solely on the basis of sensory information in favor of that option. When-
ever any of these independent processes reaches its threshold, the deci-
sion is made in favor of the corresponding option. In contrast, the
“diffusion” model (Stone, 1960; Laming, 1968; Ratcliff, 1978; Ratcliff et
al., 2003; Smith and Ratcliff, 2004) suggests that there is only a single
variable x(t), which accumulates E(t), which is defined as the difference
between sensory evidence for option A over option B. In other words,
E(t) � EA(t) � EB(t). The decision is taken when x(t) either grows above
a positive threshold �T, selecting option A, or falls below a negative
threshold �T, selecting option B. Another variant (Shadlen et al., 1996)
defines separate variables xA(t) and xB(t), each of which integrates inde-
pendent evidence, and uses a stopping rule based on the difference of
accumulated totals. Still another variant, called the “leaky competing
accumulator” model (Usher and McClelland, 2001), proposes separate
accumulators that mutually inhibit each other. Bogacz et al. (2006)
showed that, under reasonable parameter choices, most of these models
(with the exception of the independent race model) are functionally
equivalent to the diffusion model. Furthermore, the diffusion model is
formally equivalent to the SPRT and is very effective at reproducing
human behavior. Below, we consider four variations of integrator mod-
els, all based on diffusion, using different definitions of what is meant by
“sensory evidence.”

In addition to integrator models, we consider a different class of mod-
els, which are similar in that there is also a buildup of neural activity
toward a threshold, but the buildup is caused by a time-varying gain
(Ditterich, 2006), not by temporal integration. We call these urgency-
gating models, which can be expressed as follows:

xi(t) � g � Ei(t) � u(t), (2)

where u(t) is some function of time that is not related to evidence for any
particular choice. This model (Fig. 1 B), suggests that neural activity xi(t)
is the product of the momentary evidence Ei(t) and a signal u(t), which
reflects the growing urgency to make a response (Ditterich, 2006;
Churchland et al., 2008). Although this model is very different from the
integrator models (1), the two can be shown to be mathematically equiv-
alent in the case of constant evidence tasks, as follows.

First, note that if Ei(t) is not a function of time, then it can be replaced
by a constant Ei within each trial. Because a constant can be moved
outside of an integral, Equation 1 can now be rewritten as follows:

xi(t) � g�
0

t

Ei d� � g � Ei �
0

t

d� � g � Ei � t. (3)

Similarly, for the urgency-gating model, we can set Ei(t) to a constant and
simply set urgency proportional to elapsed time, u(t) � t, and so Equa-
tion 2 becomes the following:

xi(t) � g � Ei(t) � u(t) � g � Ei � t. (4)

To summarize, with the assumptions of constant evidence and linear
urgency growth, the integrator and urgency-gating models are equiva-
lent. Therefore, for any task that presents subjects with constant evidence
during each trial, the models make very similar predictions about neural
activity and behavior. In both, the neural variable grows at a rate propor-
tional to the subject’s estimate of the strength of evidence, and reaches
some threshold level of activity at the time the decision is made. In
Equation 1, the growth is attributable to integration of sensory evidence
over time (Fig. 1 A). In Equation 2, it is attributable to multiplication of
momentary evidence by a growing urgency to respond (Fig. 1 B). Because
both models propose a growth of activity at a rate proportional to evi-
dence, both make similar predictions about how sensory evidence influ-
ences neural activity, error rates, and reaction time distributions.

The above derivation of Equation 3 does not address the issue of noise.
However, it is clear that noise exists in the sensory signal as well as in the
internal processes of sensory transduction and computation of decision
variables. The presence of noise is one reason why temporal integration is
seen as essential for decision making. However, it is not the only option.
A low-pass filter can also deal with noise, without necessarily retaining all
properties of pure integration such as a long-lasting memory of past
states. Therefore, we propose that the estimate of momentary evidence
[Ei(t)] in the urgency-gating model is low-pass filtered before it is mul-
tiplied by the urgency signal.

In the context of the comparison between temporal integration and
urgency gating, it is useful to distinguish two kinds of noise in the deci-
sion process: (1) intratrial variability in Ei(t), which is attributable to
moment-to-moment neural activity fluctuations; and (2) intertrial vari-
ability in Ei, attributable to variations in levels of arousal, attention, etc.,
which are different from trial to trial but are relatively constant over the
course of each trial. Analyses of reaction time distributions using “recip-
robit plots” (Carpenter and Williams, 1995) suggest that the primary
cause of variability in reaction times is intertrial variability (differences in
arousal/attention) and that intratrial noise does not have a major impact
at the behavioral level. This makes sense because during each trial, the
brain can average across the uncorrelated activity fluctuations of many
thousands of neurons (Shadlen et al., 1996), but it cannot average over
changes in underlying baselines that vary between trials. Clearly, the
presence of intertrial noise in Ei does not affect the derivation of Equation
3 and affects both kinds of models identically. That is not the case for
intratrial noise, which results in a time-dependent noise distribution in
Equation 3 but a time-independent distribution in Equation 4. Never-
theless, we conjecture that, if intratrial noise is relatively weak (as sug-
gested by reciprobit plot analyses), and reaction times are relatively short,
then this difference will be too subtle to distinguish in data from exper-
iments that used constant-evidence tasks.
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Figure 1. Two alternative models of simple decisions. A, The bounded integrator model, in which
sensory information (E) is integrated over time (�) and compared with a threshold, resulting in a
decision (D). When evidence is strong (black lines), the buildup of activity in the neural integrator is
faster and produces a decision earlier in time than when evidence is weaker (gray lines). B, The
urgency-gating model, in which sensory information is multiplied by a growing signal related to the
urgencytorespond(u).Theproductofthesetwosignalscausesbuildupofactivitythat,as inA, is faster
for strong evidence (black) than for weak evidence (gray).
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How then can we more effectively distin-
guish between the integrator and urgency-
gating models? The key to doing so is to use
experimental tasks in which the evidence for or
against a given choice is changing over the
course of an individual trial (Huk and Shadlen,
2005; Kiani et al., 2008). If evidence is chang-
ing, then Ei(t) is no longer a constant, cannot
be taken outside of the integration, and there-
fore Equations 1 and 2 are no longer equivalent
and now make distinct predictions about both
behavioral and neural phenomena. The
present experiment is aimed at testing some of
these predictions using behavioral data from
human subjects.

Experimental design
Twenty-two human subjects (ages, 18 – 60; 7
males, 15 females; 2 left-handed) performed a
reach decision task shown in Figure 2 A. All
gave informed consent before the experiment,
and the procedure was approved by the Uni-
versity of Montréal ethics committee.

Each trial began with a central circle (2.5 cm
diameter) and two target circles (2.5 cm diam-
eter) placed 180° apart at a distance of 5 cm
from the center. Within the central circle, 15
small circular tokens were randomly arranged.
Subjects began each trial by moving the cur-
sor into the central circle. At this point, the
tokens began to jump, one-by-one every 200
ms (“predecision interval”), from the central
circle to one or the other of the targets (50/50
chance). The subject’s task was to move the
cursor to the target that he/she believed
would ultimately receive the majority of the
tokens.

Importantly, the subject was allowed to make the decision as soon as
he/she felt sufficiently confident. Once the choice was reported by mov-
ing the cursor into one of the targets, the remaining tokens jumped more
quickly to their final targets. In separate blocks, this “postdecision inter-
val” was set to either 20 ms (in “fast” blocks) or to 170 ms (in “slow”
blocks). Subjects were asked to continue each block until they made a
total of 70 correct choices, indirectly motivating them to optimize suc-
cesses per unit time. Thus, the subjects were presented with a trade-off:
either be conservative and wait until all tokens have moved, when the
decision can be made with confidence, or guess ahead of time, which is
not as reliable but yields potential successes more quickly. For example, if
the first five tokens all move into the same target, then the probability
that that target is correct is 94.5%, so it is a good idea to take a guess at that
point instead of waiting until the remaining tokens have moved. In fast
blocks, such a guess would save the subject a total of 1800 ms over the
strategy of waiting until the end, and would have only a 5% chance of
failing.

Each subject completed four to six blocks, alternating between fast
blocks, which encourage hasty behavior, and slow blocks, which encour-
age more conservative behavior. Subjects were told about the timing
parameters for both blocks ahead of time and allowed to establish their
own policies for trading off speed versus accuracy. On each trial, subjects
were provided with feedback indicating correct or incorrect decisions,
but there was no feedback or instruction regarding the timing of their
choices.

The design of the task allowed us to calculate, at each moment in time,
the “success probability” pi(t) associated with choosing each target i (Fig.
2 B). If at a particular moment in time the right target contains NR tokens,
whereas the left contains NL tokens, and there are NC tokens remaining in
the center, then the probability that the target on the right will ultimately

be the correct one (i.e., the success probability of guessing right) is as
follows:

p(R � NR, NL, NC) �
NC!

2NC �
k�0

min(NC,7�NL) 1

k!(NC � k)!
. (5)

As far as the subjects knew, the correct target and the individual token
movements were completely random. However, to test specific hypoth-
eses about the dynamics of decision making, we interspersed among the
fully random trials four specific classes of trials characterized by partic-
ular temporal profiles of success probability. Subjects were not told about
the existence of these trials. For example, 15% of trials were so-called
“easy” trials, in which tokens tended to move consistently toward one of
the targets, quickly driving the success probability pi(t) for each toward
either 0 or 1. There were several variations of easy trials, and an example
is shown in Figure 2C, black line. Another 15% of trials were “ambigu-
ous” (Fig. 2C, gray line), in which the initial token movements were
balanced, making the pi(t) function hover near 0.5 until late in the trial.
Another 10% of trials were called “bias-for” trials (Fig. 2 D, black line) in
which the first three tokens moved to the correct target, the next three
toward the opposite target, and the remaining ones resembled an easy
trial. Another 10% were called “bias-against” trials (Fig. 2 D, gray line),
which were identical to bias-for trials except the first six token move-
ments were reversed (i.e., during the early part of bias-against trials, the
bias was toward the wrong target). The remaining 50% of trials were fully
randomized. Thus, the final distribution of trials was as follows: 50%
random, 15% easy, 15% ambiguous, 10% bias-for, and 10% bias-against.
In all cases, even when the temporal profile of success probability of a trial
was predesigned, the actual correct target was randomly selected on each
trial. Over the four to six blocks of trials, each subject performed an
average of 554 trials. Unless stated otherwise, analyses included both
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Figure 2. Experimental design. A, Behavioral task. Top row, The subject begins each trial by placing the cursor (plus sign) within
the central circle. Second row, Next, the tokens begin to move from the center to one of the two targets at a slow speed (predecision
interval: 200 ms between token movements). Third row, The subject makes a choice by moving the cursor. Bottom row, The
remaining tokens move more quickly to the targets (postdecision interval: 20 ms in fast blocks and 170 ms in slow blocks) and
feedback is given to the subject. B, The temporal profile (thick black line) of the probability of a given target is computed using
Equation 5. The time of the decision (vertical dashed line) is computed by subtracting the subject’s mean reaction time from
movement onset time, allowing computation of the success probability at that moment (horizontal dashed line). C, Profiles of
success probability for easy trials (black line) and ambiguous trials (gray line). D, Profiles of success probability for bias-for (black)
and bias-against trials (gray).
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correct and error trials, and success probability was computed with re-
spect to the target chosen by the subject.

Before the 15 token task described above, each subject also performed
20 – 40 trials of a simple choice reaction time task. This task was identical
except there was only one token that moved from the center to one of the
targets and the subject was instructed to respond as quickly as possible.
We detected the time of movement onset and used that to determine each
subject’s mean RT. This provided us with an estimate of the sum of the
delays attributable to sensory processing of the stimulus display as well as
to response initiation, muscle contraction, etc. Then, in the 15 token task,
we detected the time of movement onset and subtracted each subject’s
mean RT (from the choice reaction time task) to estimate the time actu-
ally used to make the decision—the “decision time”—as shown in Figure
2 B. We then used Equation 5 to compute the success probability at the
time of the decision.

Of course, critical to interpretation of the data from this task is a
precise definition of what is meant by sensory evidence. One reasonable
definition is the following: “the information currently present within the
visual stimulus that indicates which choice is more likely to be correct.”
In our task, this evidence is related to the distribution of the tokens at a
given moment in time, which determines the probability that one or the
other target will ultimately be the correct one. This probability can be
explicitly computed for a given choice i using Equation 5 to get pi(t).
Although we do not expect that subjects were able to explicitly com-
pute Equation 5, it is conceivable that they were able to construct an
approximation (see Results). An alternative definition of sensory ev-
idence in our task is the new information provided by each token
movement, in other words, “the change in the stimulus that favors
one choice over another.” This can be explicitly computed as dpi(t)/
dt, and again we expect that subjects can construct a reasonable
approximation.

With a given definition of sensory evidence, we can discuss several
variations of integrator and urgency-gating models that use sensory in-
formation to arrive at a decision.

Simulations
We compared human behavior to six putative models of decision mak-
ing: four variations of integrator models and two variations of the
urgency-gating model. All of these were presented with the same kinds of
trials that were presented to the human subjects (focusing on slow blocks
only), and the same analyses were applied to their performance.

Model 1: pure diffusion, integration of currently available sensory
information.

xi(t) � g�
0

t

Ei(�) d� or, alternatively,
dxi

dt
� g � Ei(t) (6)

Ei(t) � pi(t) � 0.5 � N(t). (7)

In this model, sensory evidence for a choice i is related to the success
probability of that choice given the current distribution of tokens,
and this quantity is integrated over time without any additional leak.
The gain g is set to 1.5 and the term N(t) represents Gaussian noise
with mean zero and SD of 3. The threshold was set at �500. This
model is equivalent to several previously described diffusion models
(Stone, 1960; Laming, 1968; Ratcliff, 1978; Mazurek et al., 2003),
which integrate the information that is present in the stimulus at each
moment in time. It is also equivalent to the leaky competing accumu-
lator model of Usher and McClelland (2001), in which the net leakage
parameter k is equal to the competition strength parameter � (Bogacz
et al., 2006).

Model 2: diffusion with leak, integration of currently available sensory
information.

dxi

dt
� g � Ei(t) � L � xi(t) (8)

Ei(t) � pi(t) � 0.5 � N(t). (9)

In this model, sensory evidence is defined as above, but there is a leak
term (with parameter L � 0.0005, producing a strong leak) in the dy-
namic equation for xi(t). This model is equivalent to the leaky competing
accumulator model in which the leak k is stronger than the competition
strength �.

Model 3: diffusion without leak, integration of novel sensory information.

xi(t) � g �
0

t

Ei(�) d� or
dxi

dt
� g � Ei(t) (10)

Ei(t) �
dpi(t)

dt
� N(t). (11)

In this model, sensory evidence is defined as the change in the success
probability for a given choice. In other words, Ei(t) is nonzero only at the
moment when a token moves and is zero in-between token movements
regardless of the current distribution of tokens. The gain g is set to 1.

Model 4: diffusion with leak, integration of novel sensory information.

dxi

dt
� g � Ei(t) � L � xi(t) (12)

Ei(t) �
dpi(t)

dt
� N(t). (13)

Like model 3, above, this model also defines evidence as the change in
probability, but includes an additional leak term as in model 2. However,
the value of L is reduced to 0.0003, since any larger values make it nearly
impossible for neural activity to ever reach the threshold.

Model 5: urgency-gating model without filtering.

xi(t) � g � Ei(t) � u(t) (14)

Ei(t) � pi(t) � 0.5 � N(t) (15)

u(t) � t. (16)

In this model, unlike models 1– 4, the growth of activity is attributable
entirely to the urgency term u(t), which for simplicity is here defined
simply as elapsed time. The gain g is set to 0.4 and the noise SD is 0.2.

Model 6: urgency-gating model with a low-pass filter. Clearly, model 5 is
very susceptible to noise, especially late in each trial. Thus, we propose a
final model, which is similar except that sensory evidence is low-pass
filtered before gating by urgency, as follows:

xi(t) � g � Ei(t) � u(t) (17)

�
dEi(t)

dt
� �Ei(t) � ( pi(t) � 0.5 � N(t)) (18)

u(t) � t. (19)

This model is similar to model 5, except that sensory evidence is low-pass
filtered using a linear differential equation with a time constant of � �
200 ms. The gain g is set to 3 and the noise SD is 0.7.

Results
Behavioral results
In the choice reaction time task, the mean reaction times of sub-
jects ranged from 214 to 416 ms (mean, 279 ms; SD, 45 ms). The
mean RT of each individual subject was used to calculate that
subject’s decision times in the 15 token task. No significant deci-
sion time differences were found for choices made toward the
right versus left target.

One of our first questions was to investigate whether subjects
modify their decision policy as the timing parameters of the task
are varied. To address this, we compared each subject’s behavior
in two conditions, each performed in separate blocks of �100
trials. In fast blocks, the interval between token movements was
200 ms before any of the targets was reached, and accelerated to
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20 ms afterward. This encouraged guess-
ing because subjects saved a lot of time by
taking a chance and could try again almost
right away. In slow blocks, the token inter-
val accelerated to 170 ms after a target was
reached. This encouraged more conserva-
tive behavior because the benefit of choos-
ing early was reduced. As expected, most
subjects behaved more hastily in the fast
blocks and more conservatively in the
slow blocks. This is shown in Figure 3A for
one subject, whose decision times in fast
blocks (mean, 1105 ms) were significantly
shorter (Kolmogorov–Smirnov test, p �
10�25) than in slow blocks (mean, 1664).
Furthermore, the success probability at
decision time was lower in fast blocks than
in slow blocks (Fig. 3B) (KS test, p �
10�9). Most subjects (20 of 22) showed
significantly faster responses in fast versus
slow blocks (Fig. 3C) and nearly one-half
(9 of 22) had lower success probability in
fast than in slow blocks (Fig. 3D). This
suggests that, in general, subjects adjusted
their guessing policy to trade-off speed
versus accuracy.

Next, we asked whether the specific
pattern of token movements observed
during a particular trial has an effect on
the subject’s behavior. To do this, we first
focused on comparing behavior in easy
versus ambiguous trials. As expected, 19
of 22 subjects made decisions significantly
later in ambiguous trials than in easy ones
(Fig. 4A,C) (KS test, p � 0.05). More interesting is that all of
them also made decisions at a significantly lower level of success
probability in ambiguous trials (Fig. 4B,D) (KS test, p � 0.05).
That is, subjects appeared more willing to guess in ambiguous
trials than in easy trials.

Next, we compared behavior during bias-for and bias-against
trials (Fig. 2D), focusing on trials in which decisions were made
after the first six token movements. This comparison is of interest
because the two classes of models (integrator vs urgency gating)
make distinct predictions about the timing of decisions in these
trials. In particular, because integrator models retain a “memory,”
they suggest that, after the first six token movements, neural ac-
tivity related to the correct target will be higher in bias-for trials
than in bias-against trials, and therefore closer to threshold.
Therefore, these models predict faster decision times in bias-for
trials than bias-against trials. In contrast, the urgency-gating
models do not predict a significant difference.

Surprisingly, in agreement with urgency-gating models, there was
no significant difference between decision times in the bias-for
and bias-against trials (Fig. 5A,C). This was found for 21 of 22
subjects (KS test, p � 0.05). The success probability at decision
time also was similar in the two kinds of trials (Fig. 5B,D) for all
subjects (KS test, p � 0.05).

Figure 6 summarizes trends in comparing correct trials versus
errors during the slow blocks. Across all trials, the mean decision
time in error trials was longer than in correct trials for 11 of 22
subjects (KS test, p � 0.05), and the opposite was true for one
subject (Fig. 6A). Figure 6 B–E shows the same analysis restricted
to the specific trial types. No consistent trends were found in

these restricted analyses, except for the trivial observation that
errors in bias-against trials tended to occur before the seventh
token movement (Fig. 6E). More interesting was an analysis of
the success rate as a function of the number of tokens that moved
before a subject made their decision. Across all trials, the success
rate was low for very fast decisions, increased later in the trial, and
then decreased again (Fig. 6F). This was partially attributable to
the fact that subjects generally waited for �10 tokens only in trials
that were more difficult (for example, the ambiguous trials) and
in which success was closer to chance levels. Figure 6 G–J shows
the same analysis restricted to the specific trial types. As expected,
in all cases the success rate is clearly dependent on the pattern of
token movements. For example, in bias-for trials most errors
occur between the third and seventh token, and in bias-against
trials most errors occur before the seventh token.

Control analyses and simulations
Before interpreting our results with respect to particular decision
models, it is important to consider whether subjects could have
been using an explicit cognitive strategy to make their decisions.
For example, could they have discovered the presence of the spe-
cial trial types (easy, ambiguous, etc.) and then optimized their
behavior to take advantage of this knowledge? We have several
reasons to be confident that this was not the case. In particular,
the subjects whose data are included here were never told about
these trials, and during postexperiment interviews none of them
reported detecting any special trials. Furthermore, even if sub-
jects had been explicitly told to look for special trials, it would
have been very hard to detect them: First, because these trials
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Figure 3. Comparison of behavior during fast versus slow blocks, using both correct and error trials. A, Distributions of the
decision times of a representative subject. Dark line, Fast block (N � 319). Gray shaded region, Slow block (N � 275). The mean
decision time in the fast block (dotted black line; 1105 � 482 ms) was shorter than in the slow block (dotted gray line; 1664 � 672
ms) (KS test, p � 10 �25). B, Cumulative distribution of success probability at the time of the decision during fast (black) and slow
(gray) blocks, for the same subject. The mean in the fast block (0.69 � 0.15) was lower than in the slow block (0.77 � 0.18) (KS
test, p � 10 �9). C, Average decision times of each subject during slow (x-axis) and fast (y-axis) blocks. The pluses indicate the
mean and SE for subjects for whom the difference was significant (KS test, p � 0.05). The circles represent subjects for whom the
difference was not significant. The arrow indicates the subject shown above. D, Average success probability at decision time of each
subject during slow (x-axis) and fast (y-axis) blocks. The format is the same as in C.

11564 • J. Neurosci., September 16, 2009 • 29(37):11560 –11571 Cisek et al. • Decisions in Changing Conditions



were interspersed among 50% of trials that were completely ran-
dom, each special trial type was relatively rare. Second, there were
several variations of each special trial type, making it difficult to
memorize any specific pattern. Third, even among the random
trials, there are many that may partially resemble segments of the
special trials, making it extremely difficult to discover any cate-
gory boundaries. Fourth, the actual correct target was always
randomized, and this was a much more salient piece of informa-
tion for subjects to think about. Fifth, the token movements were
quite fast, making it very hard to keep track of the specific pattern.
Again, none of the subjects were told about these trials and none
reported finding them when interviewed at the end. Finally, if
against these odds a subject had indeed discovered the catego-
ries, then that subject’s behavior would clearly exhibit optimal
strategies. For example, if a subject identified a given trial as
bias-for or bias-against, then he/she should always make a
decision after exactly seven tokens (i.e., deciding between
1400 and 1600 ms), but this was not observed for any subject
(Fig. 5C).

Assuming that subjects did not use any explicit strategy to
make decisions, we examined how their behavior may agree or
disagree with several varieties of decision models. To do so, we
performed a series of simulations using the six models described
in Materials and Methods. We presented each model with 100
repetitions of easy, ambiguous, bias-for, and bias-against trials,
and compared their behavior (in terms of decision time and suc-
cess probability at decision time) to human data.

Like all of the models tested, the diffusion model (model 1)
(Fig. 7A) correctly exhibited faster decisions in easy versus am-
biguous trials (KS test, p � 0.01). It also correctly exhibited a

lower average success probability in am-
biguous versus easy trials (Fig. 7A, left,
green box) (KS test, p � 0.01). However, it
incorrectly predicted faster decisions in
bias-for versus bias-against trials (Fig. 7A,
right, red box) (KS test, p � 0.01). The
reason for this is that, immediately after
the first six token movements (time, 1200
ms), the neural activity was higher, and
closer to threshold, in bias-for trials than
in bias-against trials (Fig. 7A, shaded re-
gion in the fourth panel).

This result may appear counterintui-
tive. It might appear that a diffusion
model (Stone, 1960; Laming, 1968; Rat-
cliff, 1978; Smith and Ratcliff, 2004; Rat-
cliff et al., 2007) will predict the same
timing in bias-for and bias-against trials
because it accumulates the difference in
sensory evidence for the two options.
However, note that, in bias-for trials,
there is no moment in time at which evi-
dence favors the wrong target (i.e., the
success probability function never falls
below 0.5), and so the difference in evi-
dence is always positive (favoring the cor-
rect choice). If the sign of an integrated
quantity is sometimes positive and never
negative, then the final result of the inte-
gration will be greater than zero. In con-
trast, for the first six tokens of bias-against
trials, the evidence always favors the
wrong target, so the difference in evidence

is always negative, and therefore the result of integration after six
tokens will be less than zero. Therefore, any model that integrates
differences in currently available sensory information will predict
earlier responses in bias-for than in bias-against trials. Note that
all of our simulations include substantial intratrial noise (as op-
posed to intertrial noise) to demonstrate that our conclusions
hold even if that is the only source of noise in the system. It is
trivial to show that, if intertrial noise is the major source of vari-
ability, then our conclusions will only be stronger.

Next, we investigated whether the addition of a large leakage
term to the diffusion model (i.e., yielding model 2) may reduce
the difference in behavior between bias-for and bias-against tri-
als. In this view, by the time the decision is made, differences
between the accumulated activities in the early part of bias-for
and bias-against trials would have decayed away, and behavior
would be similar in both kinds of trials. However, even a very
strong leak (so strong that the model had difficulty ever reaching
the decision threshold) did not eliminate the difference between
the trials (Fig. 7B, right, red box). Nevertheless, we examined our
human data to see whether a strong leak could explain it. In
particular, we looked at decision times from a subset of bias-for
and bias-against trials in which a subject made the decision
within 400 ms after the sixth token movement. These early deci-
sions might still retain some bias that has not yet decayed away.
However, we did not see any significant differences between de-
cision times for bias-for versus bias-against trials in any of the 16
subjects who made enough of these fast choices to make the com-
parison possible (mean difference, �9 ms; SD, 68 ms). When we
limited the analysis to the first 200 ms after the sixth token move-
ment (six subjects made at least a few of these very early choices), we
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Figure 4. Comparison of behavior during correct easy versus ambiguous trials (Fig. 2C), embedded in the slow blocks.
A, Distribution of decision times for one subject. Dark line, Easy (N � 42). Gray shaded region, Ambiguous (N � 16). The mean
decision time in easy trials (1520 � 421 ms) was shorter than in the ambiguous trials (2223 � 269 ms) (KS test, p � 10 �8). B,
Cumulative distribution of success probability at decision time, which was higher in the easy trials (mean, 0.95 � 0.03) than in
ambiguous trials (mean, 0.60 � 0.11) (KS test, p � 10 �11). C, Average decision times for all subjects (same format as Figure 3C).
D, Average success probabilities for all subjects (same format as Figure 3D).
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again saw no significant differences (mean
difference, �3 ms; SD, 23 ms). Thus, even a
very strong leak term cannot explain our
results.

Is it possible to explain our results if we
postulate that the integrators can get “re-
set”? In other words, suppose that subjects
can recognize the condition of complete
ambiguity (when there are three tokens in
each target) as a special case and reset their
neural integrators back to baseline. Since
beyond that point the bias-for and bias-
against trials are identical, then so would
be the behavior. To evaluate this possibil-
ity, we looked among the random trials
for variations of bias-for and bias-against
trials in which the first few token move-
ments were not three and three. Specifi-
cally, we identified “bias-updown” trials
as ones in which the first three tokens
moved in the correct direction and then
one moved in the opposite direction, and
“bias-downup” trials as those in which the
first token moved in the wrong direction
and the next three in the correct direction.
We also constrained the trials such that
the profile of success probability was ap-
proximately the same for the remainder of
the trial. Critically, as shown in Figure 5E,
success probability in bias-updown trials
never reached the critical value of 0.5 that
could potentially trigger a reset of the in-
tegrators. Nevertheless, the reaction time
distributions of bias-updown trials were
not faster that those of bias-downup trials
(Fig. 5F).

In summary, no model that temporally
integrates currently available sensory in-
formation can explain our results. There-
fore, we next considered models that do
not integrate the currently available evi-
dence, but rather, integrate new informa-
tion provided by novel sensory events
(i.e., token movements, or the change in
sensory information). Indeed, a diffusion model in which the
change in sensory information was being integrated (model 3)
did correctly produce similar decision times in bias-for versus
bias-against trials (Fig. 7C, right, green box) (KS test, p � 0.1).
However, it in turn failed to reproduce the result shown on Figure
4B, because its success probability was always the same in ambig-
uous and easy trials (Fig. 7C, left, red box) (KS test, p � 0.1). The
reason for this is straightforward: if the neural activity is an inte-

gral of the derivative of some quantity �� dp

dt�, then it is simply

equivalent to that quantity [i.e., to p(t)]. Thus, it always reaches
the threshold at the same level of success probability. Adding leak
(i.e., model 4) did not improve matters because now the easy
trials incorrectly exhibited lower success probability than ambig-
uous trials (Fig. 7D, left, red box) (KS test, p � 0.01) and decisions
were slower in bias-for than in bias-against trials (Fig. 7D, right,
red box) (KS test, p � 0.01), again in disagreement with data. In
short, no tested variation of the diffusion model could reproduce

both the finding that the success probability at decision time is
higher in easy than ambiguous trials (Fig. 4B,D) as well as the
finding that decision times were similar in bias-for and bias-
against trials (Fig. 5A,C).

In contrast, both versions of the urgency-gating model repro-
duced these critical results. The model without a low-pass filter
(model 5) correctly reproduced the lower success probability in
ambiguous versus easy trials (Fig. 7D, left, green box) (KS test,
p � 0.01) as well as similar decision times in bias-for and bias-
against trials (Fig. 7D, right, green box) (KS test, p � 0.1). How-
ever, it is highly susceptible to noise as evident from plots of
example neural activity patterns. As discussed above, the brain
can overcome such noise on each trial by averaging over a large
number of neurons with uncorrelated fluctuations of activity
(Shadlen et al., 1996). Such a process may be approximated by the
addition of a low-pass filter to the model, which effectively re-
duces the gain of intratrial noise. As shown in Figure 7F, the
addition of a low-pass filter does not appreciably change the be-
havioral results, and the model still correctly produces lower suc-
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Figure 5. Comparison of behavior during correct bias-for versus bias-against trials (Fig. 2 D), embedded in the slow blocks. We
exclusively focus on those trials in which decisions were made after the first six token movements. A, Distribution of decision times
for one subject. Dark line, Bias-for (N � 42). Gray shaded region, Bias-against (N � 46). The mean decision time in bias-for trials
(1885 � 145 ms) was not significantly different from bias-against trials (1957 � 191 ms) (KS test, p � 0.05). B, Cumulative
distribution of success probability at decision time, which was also not significantly different in bias-for (mean, 0.86 � 0.06) and
bias-against trials (mean, 0.88 � 0.06) (KS test, p � 0.05). C, Average decision times for all subjects (same format as Figure 3C).
D, Average success probabilities for all subjects (same format as Figure 3D). E, Profiles of success probability for bias-updown
(black) and bias-downup (gray) trials. Note that because these trials were relatively rare, we pooled data across subjects to yield 72
bias-updown and 37 bias-downup trials. F, Distributions of decision times for bias-updown (mean, 1447 � 233 ms) and bias-
downup trials (mean, 1327 � 223 ms). The difference was not significant.
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cess probability in ambiguous versus easy trials as well as similar
decision times in bias-for and bias-against trials.

Note that, if the model that integrates novel sensory informa-
tion (model 3) is gated by a growing urgency function, then it will

effectively become a version of the urgency-gating model (model
6). This is because integrating the derivative of some signal with an
integrator that has a short time constant is similar to low-pass filter-
ing that signal. Thus, we can conclude that our results support mod-
els in which an urgency signal multiplicatively gates a filtered
estimate of current evidence, and that one way to compute that
estimate is through relatively fast integration of novel sensory events.

Decreasing accuracy criterion
If we suppose that the urgency-gating model accurately describes
the process underlying decision making in our task, then we can
make an additional prediction about the level of confidence at
which subjects will be making decisions across all trials, not just
the special trials emphasized in Figures 4 and 5. In particular, if
we make an educated guess about the E(t) function that is actually
used by our subjects, then we can predict that its value at the time
of the decision should decrease as a function of decision time. The
reason can be seen by setting Equation 2 equal to a constant
threshold T and solving for Ei(t) as follows:

g � Ei(t) � u(t) � T (20)

Ei(t) �
T

g � u(t)
�

T

g � t
. (21)

Of course, we cannot truly know the exact form of the E(t) func-
tion used by our subjects. It would be difficult to believe that
subjects can precisely calculate Equation 5, but we can expect that
they can make a reasonable estimate. For example, a simple “first-
order” estimate of sensory evidence is the sum of log-likelihood
ratios (SumLogLR) of individual token movements as follows:

ES(n) � �
j�1

n

log
p(ej � S)

p(ej � U)
, (22)

where p(ej�S) is the likelihood of a token event ej during trials in
which the selected target is correct, and p(ej�U) is its likelihood
during trials in which the unselected target is correct. Although
this may at first appear complex, it simply amounts to counting
the number of tokens which move in each direction. This expres-
sion for ES(t) can then be used to estimate the posterior proba-
bility of target S being correct using the following relationship:

p(S � n) �
eES(n)

1 � eES(n) (23)

Strictly speaking, this estimate of probability is wrong. It ignores
the conditional probability between sequential token movements
and the correct response: That is, the likelihood p(e1,e2�S) is not
simply the product of p(e1�S) and p(e2�S) because e1 and e2 are
conditionally dependent. To compute an accurate estimate of
p(t), Equation 23 would have to take that conditional probability
into account. Nevertheless, this first-order estimate actually does
quite well for the first 10 token movements: For those first 10
tokens, the estimate provided by Equation 23 linearly correlates
with the real success probability computed using Equation 5 with
a slope of 0.82 and an R 2 of 0.99 (p � 0.001).

With a reasonable estimate of how subjects may compute E(t),
we set out to test whether the value reached by this quantity at
decision time decreases as a function of time, as predicted by the
urgency-gating model. To do so, we grouped trials according to
the number of tokens that moved before the decision time and
calculated the value of E(t) for the selected target at the time of the
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Figure 6. A, Comparison of mean decision times (DT) in correct (x-axis) versus error
trials (y-axis) across all trials in slow blocks (same format as Figure 3C). B, Comparison of
mean decision times in correct versus error trials using data only from easy trials. Data are
shown only for those subjects who made at least one error in easy trials (N � 6). C,
Comparison of correct versus error decision times in ambiguous (Ambig.) trials. D, Same
for bias-for (BF) trials. E, Same for bias-against (BA) trials. F, For each subject, the lines
show the success rate across all trials as a function of the number of tokens that moved
before the decision. For clarity, points for which there were fewer than five total trials are
omitted. G, Same as F except only for easy trials. H, Same for ambiguous trials. I, Same for
bias-for trials (all, regardless of when decision was made). J, Same for bias-against trials.
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decision. The result for one subject is shown in Figure 8 A.
A simple linear regression through the data shows a significant fit
( p � 10�10) with a negative slope. A significant regression was
found for 16 of 22 subjects (Fig. 8B), and 15 of these had a
negative slope. In summary, there was a trend for later decisions
to be made at a lower level of E(t) than decisions made early in the
trial, consistent with the predictions of the urgency-gating model.
Furthermore, the slope tended to be shallower (Fig. 8C) (paired t
test, p � 0.01) and the y-intercept lower (Fig. 8D) (paired t test,
p � 0.01) during the fast blocks than the slow blocks, suggesting
that, on average, the urgency signal follows a different time-
course during the two blocks and thus controls the trade-off be-
tween speed and accuracy of decisions. This finding further
predicts that the level of confidence that subjects have in the
decisions they make should decrease with longer decision times.

Discussion
Several models propose that simple decisions involve the tempo-
ral integration of sequential sensory samples until a threshold is
reached (Stone, 1960; Laming, 1968; Ratcliff, 1978; Carpenter
and Williams, 1995; Usher and McClelland, 2001; Wang, 2002;
Mazurek et al., 2003; Grossberg and Pilly, 2008). These models
explain error rates and reaction time distributions, and are sup-
ported by neurophysiological studies showing buildup activity in a
number of brain structures during decision-making tasks (Mu-
noz and Wurtz, 1995; Kim and Shadlen, 1999; Gold and Shadlen,

2000; Roitman and Shadlen, 2002; Ratcliff
et al., 2003, 2007; Shen and Paré, 2007).

The present study, however, prompts
us to reconsider two aspects of these mod-
els. First, we propose that evidence for a
given choice should not be computed by
temporally integrating the information
currently present in the stimulus. Instead,
it should involve either summation of
only new information (provided by a
change in the state of the stimulus) or be a
low-pass-filtered signal related to the state
of the sensory information. This is consis-
tent with studies suggesting that the time
window of integration for perceptual de-
cision making is on the order of 100 ms
(Ludwig et al., 2005; Ghose, 2006). Sec-
ond, we suggest that the long buildup of
neural activity in constant-evidence tasks
is not caused by an integration process but
is primarily attributable to a growing ur-
gency signal that is unrelated to any par-
ticular choice.

An influential argument in favor of in-
tegrator models arises from their similar-
ity to the SPRT (Wald, 1945), a statistical
test for deciding whether current evidence
for a given hypothesis is sufficient to en-
sure a criterion level of accuracy. Because
the SPRT can be performed through sum-
mation of independent pieces of evidence
and comparison to a threshold, it has been
suggested that it is effectively imple-
mented by integrator models (Bogacz et
al., 2006; Bogacz and Gurney, 2007; Gold
and Shadlen, 2007). However, there is a
difference between how probability is cal-
culated and how it is traded off against

time. The SPRT is optimal in the sense of producing the best
accuracy after a given time, or requiring the fewest number of
samples to reach a given accuracy (Wald and Wolfowitz, 1948),
but it does not implement a trade-off between time and accuracy.
Animals cannot afford to have a fixed threshold of accuracy but
must be willing to tolerate lower success rates to reduce the time
spent in making a decision (Chittka et al., 2009). An accuracy
criterion that decreases over time accomplishes this and can be
implemented through a multiplication of evidence by a growing
urgency signal and comparison with a constant neural threshold.

Furthermore, the similarity between the diffusion model and
the SPRT only holds if the sequential samples of information are
statistically independent (Bogacz et al., 2006), which is not the
case in most tasks that have been studied. In particular, if a sample
is already predicted by previous samples, then it should be ig-
nored. In other words, if integration takes place, then it should be
integration of novel sensory information, and not of the infor-
mation present in the stimulus at a given time. Because in
constant-evidence tasks novel information only arrives at cue
presentation, the integration should result in a step function of
neural activity (or a fast saturation in the case of noisy informa-
tion). It should not resemble the long growth of activity observed
in neural studies and inferred from reaction time distributions.
That growth, we propose, is primarily attributable to an urgency
signal that implements a trade-off between speed and accuracy.
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Figure 8. A, Analysis of SumLogLR at decision time for decisions made at different times, for an individual subject’s data from slow
blocks (N � 266). For each 200 ms bin, we show the mean (dot), SEM (thick lines), and SD (thin lines) of the SumLogLR at the time the
decision was made. The oblique line shows a linear regression through the data (slope, �0.24; intercept, 3.41; R 2 � 0.29; p � 10 �10),
suggesting a decreasing threshold. B, Results of linear regressions for all of the subjects (the subject in A is indicated by the arrow). The solid
lines show regressions that were significant ( p � 0.05), and the dashed lines show those that were not. C, Slopes of regression lines of
individual subjects, comparing regressions from slow blocks (x-axis) versus fast blocks ( y-axis). The dots indicate when the regression from
the slow block was significant. D, Intercepts of regression lines from slow (x-axis) versus fast ( y-axis) blocks.
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There is already widespread evidence for buildup signals in
many brain regions and many experimental paradigms. For ex-
ample, neural activity related to elapsed time has been reported in
prefrontal cortex during duration reproduction (Jech et al.,
2005), and in LIP during time interval (Leon and Shadlen, 2003)
and motion discrimination (Churchland et al., 2008). During
instructed delays with different possible durations, as each of the
likely GO signal times approaches there is a buildup of neural
activity in LIP during saccade tasks (Janssen and Shadlen, 2005),
and in motor cortex during reaching tasks (Renoult et al., 2006),
with corresponding changes of corticospinal excitability (van
Elswijk et al., 2007). More generally, buildup activity has been
reported in a variety of brain regions even during motor tasks that
do not involve any decisions (Hanes and Schall, 1996; Munoz et al.,
2000; Ivry and Spencer, 2004; Roesch and Olson, 2005; Tanaka,
2007; Thomas and Paré, 2007; Lebedev et al., 2008). It is therefore
reasonable to suggest that such buildup can influence decision-
making processes, which appear to involve the same structures that
are involved in sensorimotor control (Glimcher, 2003; Romo et al.,
2004; Cisek and Kalaska, 2005; Gold and Shadlen, 2007).

We cannot know whether our conclusions can be applied to
other studies. It is likely that decision-making mechanisms are at
least partially task dependent (Ghose, 2006). Nevertheless, ur-
gency gating provides a simple potential explanation for data
from the well known motion discrimination tasks. During
these tasks, neurons in the medial temporal area (MT) reflect
motion evidence very rapidly, equilibrating to a relatively
steady coherence-related firing rate within 150 –200 ms (Britten
et al., 1992). This is compatible with a temporal filter model
(Ludwig et al., 2005) in which MT activity is a filtered version of
the noisy motion signals arriving from earlier visual areas. During
a “fixed duration” (FD) version of the task (Fig. 9A), in which the
monkey must report its decision only after an external GO signal,
LIP activity equilibrates at a coherence-dependent firing rate in
�300 ms, suggesting that no additional integration of the MT
signal takes place (Roitman and Shadlen, 2002) (see also Shadlen
and Newsome, 2001). However, during a RT version (Fig. 9B), in
which the monkey can report its decision at any time, LIP activity
continues to grow for as long as 800 ms (Roitman and Shadlen,
2002). Furthermore, the apparent threshold of LIP activity for

saccade initiation in the RT task (60 –70 Hz) is higher than the
activity at which the same cells equilibrate in the FD task (�50
Hz), despite the fact that performance in both conditions is com-
parable. What can explain this task dependence of LIP activity?

Previous models have suggested that, during the FD task, the
LIP signal saturates because there is a large leak term (Grossberg
and Pilly, 2008) or because a threshold is crossed and activity
stops at its current level after a delay (Mazurek et al., 2003). The
urgency-gating model suggests a straightforward alternative: In
the RT task, monkeys are allowed to control the trade-off be-
tween speed and accuracy, and do so through a growing urgency
signal. This, multiplied by the coherence-dependent MT input,
produces LIP activity that exhibits a coherence-dependent growth
rate. In the FD task, monkeys must ensure that LIP activity does
not reach the saccade threshold prematurely, so the urgency sig-
nal is low and constant until the GO signal. This, multiplied by
the MT input, would yield coherence-dependent but relatively
constant LIP activity, as observed.

Recently, Ditterich (2006) showed that the behavioral and
neural data from the RT task can only be explained by models that
include a gain that grows linearly with time. Importantly, he
showed that, as long as there is a growing gain, then it is not
strictly necessary for the model to involve any type of temporal
integration. His analysis is therefore compatible with the urgency-
gating model. Although Ditterich favored the presence of inte-
gration on the grounds of signal-to-noise considerations, those
considerations can also be met if MT signals are low-pass filtered
before arriving in LIP, as in model 6.

Nevertheless, we cannot claim that urgency gating can explain
the variety of results observed during the motion discrimination
tasks. For example, Kiani et al. (2008) presented brief motion
pulses to monkeys performing the FD task, finding a short win-
dow for motion integration (�300 –350 ms). However, Huk and
Shadlen (2005) presented similar motion pulses during the RT
task and obtained a much longer window. It remains unclear why
such different results were obtained in these two studies.

These caveats aside, our data propose a reconsideration of the
central concept of many recent models of decision making—
buildup of activity through temporal integration. Summation of
evidence from sequential samples is a good way to estimate the

Figure 9. Neural data from the experiment of Roitman and Shadlen (2002), reprinted with permission. A, Data from the FD version of the motion discrimination task. The solid lines show average
neural activity of 54 LIP cells during trials in which the monkey correctly selected the target in the response field of the cell, and the dotted lines show activity when the monkey correctly selected the
opposite target. Different colors indicate trials with different motion coherence (see inset). The data on the left are aligned to the onset of motion, and data on the right to the onset of the saccade.
B, Data from the RT version of the task, same format.
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posterior probability of success for a given choice, and the brain may
indeed use something like that when it is appropriate [e.g., in the
present task or the task of Yang and Shadlen (2007)]. However, such
a process should only sum novel information and therefore may not
be responsible for the long-duration growth of neural activity ob-
served in many neurophysiological experiments and inferred from
behavioral data in constant-evidence tasks. Instead, we propose that
this growth of activity is primarily attributable to multiplication of
sensory evidence (which may be computed through a low-pass filter
or through integration of the change in the stimulus) with a motor
initiation-related buildup signal. In this view, what determines the
timing of actions is not the termination of pure decision-making
processes followed by movement preparation and execution. In-
stead, the strength of evidence for a given choice is combined with a
motor signal related to the urgency to make a choice, and it is the two
together that turn decisions into action.
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Shen K, Paré M (2007) Neuronal activity in superior colliculus signals both
stimulus identity and saccade goals during visual conjunction search. J Vis
7:15.1–15.13.

Smith PL, Ratcliff R (2004) Psychology and neurobiology of simple deci-
sions. Trends Neurosci 27:161–168.

Stone M (1960) Models for choice reaction time. Psychometrika 25:251–260.
Tanaka M (2007) Cognitive signals in the primate motor thalamus predict

saccade timing. J Neurosci 27:12109 –12118.
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