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Cos I, Duque J, Cisek P. Rapid prediction of biomechanical costs
during action decisions. J Neurophysiol 112: 1256–1266, 2014. First
published June 4, 2014; doi:10.1152/jn.00147.2014.—When given a
choice between actions that yield the same reward, we tend to prefer
the one that requires the least effort. Recent studies have shown that
humans are remarkably accurate at evaluating the effort of potential
reaching actions and can predict the subtle energetic demand caused
by the nonisotropic biomechanical properties of the arm. In the
present study, we investigated the time course over which such
information is computed and comes to influence decisions. Two
independent approaches were used. First, subjects performed a reach
decision task in which the time interval for deciding between two
candidate reaching actions was varied from 200 to 800 ms. Second,
we measured motor-evoked potential (MEPs) to single-pulse trans-
cranial magnetic stimulation (TMS) over the primary motor cortex
(M1) to probe the evolving decision at different times after stimulus
presentation. Both studies yielded a consistent conclusion: that a
prediction of the effort associated with candidate movements is
computed very quickly and influences decisions within 200 ms after
presentation of the candidate actions. Furthermore, whereas the MEPs
measured 150 ms after stimulus presentation were well correlated
with the choices that subjects ultimately made, later in the trial the
MEP amplitudes were primarily related to the muscular requirements
of the chosen movement. This suggests that corticospinal excitability
(CSE) initially reflects a competition between candidate actions and
later changes to reflect the processes of preparing to implement the
winning action choice.

decision-making; human; motor control; motor intention; TMS

WHEN DECIDING BETWEEN ACTIONS, the brain must take into
account their potential payoffs as well as execution costs. The
neural mechanisms for computing payoff have been the subject
of many studies, implicating the orbitofrontal and medial
prefrontal cortex (Camille et al. 2011; Kennerley et al. 2011;
Padoa-Schioppa 2011; Rudebeck et al. 2008) as well as frontal
and parietal sensorimotor areas (Gold and Shadlen 2007; Pas-
tor-Bernier and Cisek 2011; Platt and Glimcher 1999). How-
ever, how the brain estimates the execution costs of candidate
actions has only begun to be investigated (Kennerley et al.
2011; Pasquereau and Turner 2013). In particular, the biome-
chanical properties of effectors strongly influence not just the
manner in which movements are implemented (Dounskaia et
al. 2011; Goble et al. 2007) but also which movements are
selected (Cos et al. 2011). For example, a boxer often punches
along directions of maximal inertia to transfer maximal energy
to the hit. In contrast, directions of minimal inertia are typically

used to perform movements requiring precision. Does this
imply that decision-making involves regions of the brain, such
as the M1 or cerebellum, which are sensitive to information
about biomechanics (Evarts 1968; Kalaska et al. 1989; Thach
1978)?

When humans make free choices between reaching actions,
they tend to choose the one that is easiest in a biomechanical
sense (Cos et al. 2011) taking into account specific control
requirements (Cos et al. 2012). Importantly, even when two
candidate actions are similar in terms of their launching cost,
subjects still choose the one that has a lower cost at the end of
movement. This suggests that we are able to predict, before
movement initiation, the biomechanical properties of the entire
candidate movements and choose the one for which the total
cost is lowest. But how does this prediction take place, and
how much time does it require?

In the present study, we used two approaches for quantifying
the time course over which reach decisions evolve. The first
approach used a timed-response task (Ghez et al. 1997) to
determine the time interval required for viewing the candidate
movements before choices take spatial and biomechanical
factors into account. The second approach consisted of mea-
suring motor-evoked potentials (MEPs) elicited by single-pulse
transcranial magnetic stimulation (TMS) of M1 to assess cor-
ticospinal excitability (CSE) at different times after stimulus
presentation. CSE can be used as a probe into the subject’s
preparatory state (van Elswijk et al. 2007), reflecting the
potential value of imminent movements (Klein-Flügge and
Bestmann 2012; Klein et al. 2012) as well as choice switches
in conflict situations (Michelet et al. 2010). However, because
CSE also correlates with the magnitude of upcoming muscular
contraction (MacKinnon and Rothwell 2000), a potential quan-
dary is raised: How can CSE increase both with one’s prefer-
ence and with one’s impending muscular effort if one’s pref-
erence is for movements that require less effort? We predict
that whereas CSE initially reflects a competition between
candidate movements, once the decision is made it begins to
reflect the biomechanical requirements of the action that is
chosen.

METHODS

Participants. Eight right-handed subjects (7 women, 1 man, aver-
age age 24 yr) participated in a behavioral experiment (1 session) and
a TMS experiment (2 sessions on separate days). They had no known
neurological disorders and normal or corrected-to-normal vision, and
they were uninformed about the purpose of these experiments. Sub-
jects signed a consent form before participating, and the experimental
protocol was approved by the Human Research Ethics Committee of
the Faculty of Medicine at the University of Montreal.
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Apparatus and task design. The task apparatus consisted of a
digitizing tablet (GTCO Calcomp, Columbia, MD; 0.915 � 0.608 m)
and a half-silvered mirror suspended 16 cm above and parallel to the
digitizer plane. Visual stimuli were projected onto the mirror by an
LCD monitor suspended 16 cm above the mirror, producing the
illusion that the targets lie on the plane of the digitizing tablet (Fig. 1A).
Subjects made reaching movements in the horizontal plane using a
digitizing stylus whose position was sampled at 125 Hz with a spatial
resolution of 0.006 in. � 0.127 mm. The control of the task, stimulus
display, and synchronization of task events and signal recording were
performed by a custom-written LabVIEW program (National Instru-
ments, Austin, TX). The data were stored in a MySQL database
(Oracle, Redwood Shores, CA) and analyzed using custom Matlab
scripts (The MathWorks, Natick, MA).

In the behavioral session (Fig. 1B), subjects performed 640 trials in
4 blocks, each of which consisted of 128 two-target and 32 one-target
trials. Each trial began when the subject placed the stylus in a central

cyan circle (radius 1 cm) for a 300–700 ms center hold time (CHT).
Next, a series of acoustic signals were systematically given at 0, 500,
1,000, and 2,000 ms after the end of CHT. Subjects were instructed to
initiate movement as close as possible to the time of the fourth
acoustic signal. The presentation of the visual stimuli defining the
potential movements preceded that fourth signal by an observation
interval of 200, 400, 600, or 800 ms, chosen pseudorandomly on each
trial. In two-target trials, subjects were presented with two movement
choices, each defined by a via-point (cyan dot radius 1 cm) and a
target (3 � 1-cm blue rectangle) placed in one of the arrangements
shown in Fig. 1D. In the “T1-Major” (T1M) arrangements, the
movement toward the right target (T1) required less biomechanical
effort than the movement toward the left target (T2), whereas the
opposite was true in the “T1-minor” (T1m) arrangements. As de-
scribed in detail in Cos et al. (2011), biomechanical effort was
characterized using the end-point mobility ellipse (Hogan 1985a,
1985b, 1985c), which summarizes how muscle torques translate to
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Fig. 1. A: task apparatus, showing a subject seated at the digitizing tablet with her head in a chin rest and holding the stylus in her right hand. B: description
of the time course of a trial. The boxes depict the stimuli presented to subjects on a typical trial (see METHODS, Apparatus and task design, for further details).
The pale blue dot represents the origin, the 2 cyan dots the via-points, and the 2 blue rectangles the targets. The origin disappeared when the stylus left it, and
the via-point and the target turned green when the stylus slid over them. Task events in the behavioral session are center hold time (CHT) and observation interval
(OI), which is 200, 400, 500, or 800 ms. C: description of the time course of a TMS trial (same as in B except that the targets are round blue circles). Lightning
bolts indicate stimulation times at 1, 150, 200, 250, 300, and 350 ms after target onset. THT, target hold time. D: the 6 pairs of target arrangements shown to
subjects during two-target trials. The starting circle and via-points are represented by cyan dots (not to scale) and the targets by 3 � 1-cm rectangles. Dotted
ellipses illustrate the biomechanical mobility at the starting and target locations, and arrows demonstrate the required movement paths. Note that in the
“T1-Major” (T1M) arrangements, movement to T1 arrives along the major axis of the mobility ellipse, whereas movement to T2 arrives along the minor axis.
This is reversed in the “T1-minor” (T1m) arrangements. Numbers next to the targets indicate estimates of the energy required for the movement, in mJ. E: metrics
used to quantify how biomechanical cost and path length influence subject choices. Circles show the percentage of T1 choices as a function of relative path length
(logarithm of length ratio D1/D2) for T1M (filled) and T1m (open) arrangements. Solid and dashed lines are logistic fits through these points. To characterize
the effect of relative path length, we calculate the maximum vertical range (MVR) of the T1M and T1m data, and to characterize the effect of biomechanics,
we calculate the area (A) between the T1M minus T1m curves.
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hand displacement. In brief, movements along the major axis of the
ellipse are easy and require little effort, whereas movements along the
minor axis require more effort. Note that because the via-points are in
opposite directions from the origin, the radius of the ellipse along both
directions is the same, implying that the biomechanical cost of the
initial part of the movement (until the via-point) is very similar for
both movement choices, in both T1M and T1m arrangements. How-
ever, the movements differ at the end: in the T1m arrangement, arrival
at T1 is along the minor axis, making it more difficult than arrival at
T2. The converse is true in the T1M arrangement. In addition to
manipulating the biomechanical costs of moving to T1 vs. T2, we also
varied the length of movement to each target along the path from the
center and through the via-point. The total path lengths to T1 vs. T2
were 9 vs. 13 cm (33% of trials), 11 vs. 11 cm (33%), or 13 vs. 9 cm
(33%). In the one-target trials, only a single via-point and target
appeared, chosen randomly from the four equal-path length cases (T1
or T2; T1M or T1m; 11 cm). Subjects were instructed to choose the
movement that “feels most comfortable,” passing through the via-
point and through the target. Subjects were not required to stop in the
target. The trial was considered an error if the reaction time was
longer than 200 ms or if the stylus reached the target before first
crossing over the via-point. During the movement, the stylus position
was continuously indicated by a small cross, and the via-point and
target cues changed to green as the stylus slid over them. Trials were
separated by a 500-ms intertrial interval.

In the TMS sessions (Fig. 1C), the task was similar, except that the
observation interval was always 500 ms, the targets were blue circles
2 cm in diameter, and subjects were instructed to stop in them for a
target hold time (THT) of 500 ms. The intertrial interval was 3,000

ms. In each of the two TMS sessions, subjects performed 6 blocks of
132 trials. Each block contained 12 one-target trials, 4 of which were
baseline stimulation trials (TMS applied 1 ms after stimulus onset),
and 120 two-target trials. Among the 120 two-target trials there were
20 repetitions of each of the 6 target arrangements. TMS was applied
on half of these, twice at each of the 5 stimulation times (150, 200,
250, 300, or 350 ms). Thus each subject performed 24 trials (2
sessions � 6 blocks � 2 repetitions) at each arrangement and
stimulation time. To quantify the CSE in each condition, we recorded
electromyographic (EMG) activity in six arm muscles and calculated
the magnitude of MEPs caused by the TMS pulse.

EMG recording. EMG activity was recorded from three flexors,
pectoralis major (PEC), biceps long head (BIC), and brachioradialis
(BRA), and three extensors, triceps lateral head (TRIA), triceps long
head (TRI), and posterior deltoid (DEL). EMGs were measured with
disposable MT-130 surface electrodes, bandpass filtered (10–400
Hz), amplified (�1,000) by an 8-channel Lynx-8 instrumentation
amplifier (Neuralynx, Bozeman, MT), and sampled at 1,000 Hz by an
acquisition card (National Instruments) installed in a personal com-
puter running Windows XP (Microsoft, Redmond, WA). Maximum
voluntary contraction (MVC) was estimated at the beginning of each
session for each subject as the average of the peak-to-peak EMG
amplitude during three maximal contractions of each muscle. This
measure was used to normalize the EMG activity recorded in each
muscle during the reaching movements. Although we recorded from
all six muscles, for the analysis of MEPs we focused on the raw
DEL and TRI signals (before normalization), because these two
muscles proved to be clear agonists for movements toward T1 (see
Fig. 3), strongly discriminating between the two movements. We
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Fig. 2. Results from the behavioral sessions. A: the percentage of T1 choices as a function of relative path length for T1M (filled circles and solid line) and T1m
arrangements (open circles and dashed line) for each observation interval. Below each plot, the left histogram shows the distribution of the shuffled A-metric
compared with the real unshuffled value (red vertical line), and the P value indicates significance. The middle and right histograms compare the shuffled values
of the MVR-metric to zero, for T1M and T1m data, respectively. B: comparison of the MVR-metrics (T1M, solid; T1m, dashed) for different observation intervals
(left). Histograms (right) show bootstrap comparisons of the differences between 3 pairs of intervals for which the difference was significant. Red line indicates
zero difference. C: comparison of A-metrics for different observation intervals (left). Histograms (right) show bootstrap comparisons between intervals, none of
which are significant.
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had no recordings of comparably clear agonist activity for move-
ments toward T2.

Single-pulse TMS. Throughout the TMS sessions, subjects used a
chin rest to reduce head motion and wore a tightly fitted electroen-
cephalography (EEG) cap. A figure-of-eight coil (7-cm diameter of
wings) connected to a Magstim Rapid stimulator (Magstim, Whitland,
UK) was placed tangentially on the scalp with the handle oriented
toward the back of the head and 45° away from the midline, approx-
imately perpendicular to the central sulcus. We identified the optimal
spot for eliciting MEPs in the TRI and the DEL with single TMS
pulses (1-ms duration). This location was marked on the EEG cap to
provide a reference point throughout the experimental session. The
resting motor threshold (rMT) was defined as the minimum TMS
intensity necessary to evoke MEPs of �50 �V peak to peak in the Tri
in 5 of 10 consecutive trials. The mean rMT was 57.45% (SD 4.5) of
the maximum stimulator output. The intensity of the TMS for the
experimental sessions was always 115% of rMT, set for each subject
at the beginning of each individual session.

The amplitude of MEPs was quantified in each trial using the
“peak-to-peak” method, which measured the difference between the
maximum and minimum values of unrectified EMG within a time
interval of 15–35 ms after the TMS pulse. This interval proved
to be optimal for MEPs recorded in proximal muscles. The MEPs
were transformed into Z scores (by subtracting the mean MEP
amplitude for each individual session and dividing by the standard
deviation of the MEPs) and then normalized to the baseline (MEPs
evoked at 1 ms after stimulus presentation). Trials in which
voluntary contraction of DEL or TRI overlapped with the evoked
potential were discarded from MEP analyses.

MEP and EMG correlation analysis. One concern about MEPs is
that they could partly reflect EMG activation, rather than an element
of cortical activity, before EMG activation. To control for this possi-
bility, we performed a correlation analysis between the MEP peak-
to-peak amplitudes and the EMG amplitude of the corresponding
muscle, recorded during the same time window. We performed this
analysis for the DEL and TRI for each individual subject.

Analysis of target preference. Figure 1E illustrates how we quan-
tified the effects of path length and biomechanical cost on subject
choices. We calculated the proportion of trials for which subjects
chose T1 over the total number of choices to obtain a measure of each
subject’s preference for T1, for each of the possible relative T1/T2
path lengths. The proportion of T1 choices for each biomechanical
configuration (T1M and T1m) was plotted on a logarithmic scale and
fitted with a sigmoidal curve as described by Eq. 1:

PT1�Q� �
eQ

1 � eQ Q � a � log�D1

D2
� � b (1)

where a and b are free parameters and D1 and D2 are the path lengths
measured from the starting point through the via-point and to the
target. If path length has an effect, we expect these sigmoids to have
a negative slope, and characterize the magnitude of the effect using
the maximum vertical range (MVR) of the data for T1M and T1m
separately. If biomechanical cost has an effect, we expect the curve
for T1M to be shifted to the right of the curve for T1m. We
characterize its magnitude by calculating the area (A) below the curve
for T1M and above the curve for T1m. Bootstrapping was used to
assess statistical significance of these metrics. In brief, we generated
a distribution of 10,000 A-metrics computed from randomized data
sets in which the preference values were randomly shuffled. If the
unshuffled value of the A-metric was greater than 95% of the distri-
bution of shuffled A-metrics, the result was considered significant at
P � 0.05. To assess whether the MVR was significantly larger than
zero, we calculated the distribution of randomly shuffled data for each
individual sigmoid and checked whether 95% of that distribution of
shuffled MVR metrics was higher than zero. If that was the case, the
result was considered significant at P � 0.05. We used similar

bootstrapping techniques to assess the growth of the A-metric and
MVR-metric across different observation intervals (Efron 1982).

Our calculation of net muscle work is described in detail in Cos et
al. (2011). In brief, using a simplified two-segment rigid body model
of the arm, we calculated the integral of the muscle work (subtracting
out the contribution of interaction torques) along the path from the
starting point to the target through the via-point for each joint. We
then added the muscle work calculated for each joint to obtain the
estimate of total muscle work. These estimates for each movement
are indicated in milliJoules (mJ) near each target in Fig. 1D.

Analysis of the influence of biomechanics and path length on CSE.
To assess the effects of path length and biomechanical costs on CSE,
we analyzed the z-normalized MEP amplitudes at each stimulation
time by means of a four-way analysis of variance (ANOVA) with the
following factors: biomechanics (B: T1M or T1m), path length (or
distance) to target T1 (D: 9, 11, or 13 cm), chosen target (C: T1 or T2),
and muscle (M: DEL or TRI). The criterion of significance was P �
0.05. For main effects and interactions that met significance according
to the ANOVA, we also performed paired t-tests corrected for mul-
tiple comparisons (Bonferroni) on the MEP distributions.

RESULTS

Movement preference as a function of observation interval.
As in our previous studies, subjects exhibited a preference for
moving to targets closer to the starting point and along paths
requiring lower biomechanical effort. To quantify these effects,
we pooled together the data from all eight subjects of our first
experiment as a function of the observation interval (200, 400,
600, or 800 ms) and calculated the preference curves for T1 for
each of the two arrangements (T1M and T1m) as a function of
the relative path length to the targets (see Fig. 1, D and E).
Similar to our previous results with a 1,000-ms observation
interval (Cos et al. 2011, 2012), the preference for T1 exhibited
a significant shift between the T1M and T1m arrangements
(bootstrap test, P � 0.05; see METHODS), indicating that subjects
are biased to select movements with lower biomechanical
effort. Remarkably, this was significant for all observation
intervals (for 7/8 subjects; see Fig. 2A). Hence, biomechanical

Table 1. Main effects and interactions of factors

Factor 150 ms 200 ms 250 ms 300 ms 350 ms

B 0.5527 0.0211 0.00211 0.0969 0.7450
D 0.1072 0.0290 0.2973 0.0007 0.0638
C 0.0002 0.0000 0.0000 0.0000 0.0000
M 0.7839 0.6390 0.8388 0.9721 0.0147
B�D 0.1241 0.3093 0.0292 0.0805 0.1488
B�C 0.0010 0.0016 0.0825 0.1232 0.8931
B�M 0.4406 0.7378 0.8583 0.2262 0.2772
D�C 0.0116 0.0007 0.1406 0.0011 0.0363
D�M 0.8133 0.4111 0.9328 0.7351 0.9539
C�M 0.1792 0.1101 0.3510 0.5018 0.6935
B�D�C 0.4610 0.2927 0.3977 0.1733 0.0069
B�D�M 0.8432 0.5033 0.8357 0.7474 0.6388
B�C�M 0.3165 0.1669 0.6914 0.2788 0.2731
D�C�M 0.1910 0.5002 0.9309 0.8872 0.8957
B�D�C�M 0.6270 0.6287 0.7201 0.8423 0.7421

P values for main effects and interactions at 5 transcranial magnetic
stimulation (TMS) times were obtained from 4-way analysis of variance
performed on motor-evoked potential (MEP) amplitudes with the following
factors: biomechanics [B: T1-Major (T1M) or T1-minor (T1m)]; path length to
target T1 (D: 9, 11, or 13 cm); chosen target (C: T1 or T2), and muscle (M:
posterior deltoid or triceps long head). Bold values indicate statistical signif-
icance (P � 0.05).
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factors were very quickly predicted from the stimulus display
and influenced the choice even if the targets and via-points
were visible for only 200 ms before movement onset.

However, as can be seen in Fig. 2A, the influence of
biomechanics and path length (measured using differences
between preference curves for T1M and T1m arrangements)
did not remain stable across the different observation intervals.
In particular, the bias for shorter relative path length (quanti-
fied by the MVR metric; see METHODS) was significantly stron-
ger at 600 and 800 ms than it was at 200 ms (Fig. 2B; bootstrap
test, P � 0.05) for both T1M and T1m arrangements. In
contrast, the biasing effect of biomechanics (quantified by the
A-metric; see METHODS) remained relatively similar as the
duration of the observation interval expanded (Fig. 2C). In
summary, the subjects’ preference for shorter and biomechani-
cally easier movements took as little as 200 ms to develop, and
the preference for shorter movements became gradually stron-
ger as time passed.

It is worth mentioning that, in addition to the biomechanical
and path distance factors, all subjects exhibited a mild direc-
tional bias. Hence, the sigmoids on Fig. 2A are not necessarily
centered on zero. Nevertheless, since our emphasis is analyzing
the influence of the biomechanical factors, we primarily fo-
cused on the shift between the T1M and T1m sigmoids.

Time course of the influence of biomechanics and path
length on CSE. To test how the CSE was influenced by
biomechanical ease and relative path length, as well as target
choice and muscle, we first performed a four-way ANOVA on
the z-normalized MEP amplitudes obtained at each stimulation
time (150, 200, 250, 300, and 350 ms) with the following
factors: biomechanics (B), path length to T1 (D), chosen target
(C), and muscle (M). The results are summarized in Table 1 as
P values for each main effect or interaction at each of the five
TMS stimulation times. First, note that the factor muscle had a
significant main effect only at 350 ms, and there was no
significant higher-order interaction with the other factors.
Hence, in subsequent analyses we collapsed data across the
two muscles across all subjects. Second, note that the chosen
target exerted a very significant effect on z-normalized MEPs
at all stimulation times, because both muscles were agonists for
T1 but not T2 movements (Fig. 3A; see also Fig. 3B for an
illustration of the DEL and TRI z-normalized MEPs repre-
sented separately or pooled together). Third, the chosen target
had a strong interaction with both biomechanics (B�C) and
path length (D�C) at the two earliest stimulation times (150
and 200 ms) and with path length at the two latest times (300
and 350 ms). Finally, there was also a significant interaction
between biomechanics and path length (B�D) at 250 ms and
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Fig. 3. A: electromyographic (EMG) activity of the posterior deltoid (DEL) and triceps long head (TRI) for T1 (red) and T2 choices (blue) in the T1M (top) and
T1m arrangements (bottom), expressed as a percentage of the maximum voluntary contraction (MVC) of each muscle. Vertical dashed line indicates movement
onset. B, left: normalized motor-evoked potential (MEP) amplitude of DEL (top) and TRI (bottom) as a function of stimulation time, showing the mean and SE
across all T1 choice (red) and T2 choice (blue) trials. Numbers indicate P value of Kolmogorov-Smirnov (KS) test applied to the distribution of MEPs in T1
vs. T2 choice trials. Right, pooled data from both muscles. norm., Normalized.
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a significant three-way interaction between biomechanics, path
length, and choice (B�D�C) at 350 ms. In the following
paragraphs, we examine each of these effects and interactions
in detail.

Figure 4, A and B, shows the interaction effect of biome-
chanical cost and choice on MEPs in a single subject (in mV)
or across subjects (in mV and after normalization) for T1 (A)
and T2 choices (B) in the T1M (red) and T1m (blue) arrange-
ments (data are pooled across both muscles). When T1 was
chosen (Fig. 4A), MEPs measured at 150 ms were larger when
T1 was the biomechanically easier target (T1M; red) than when
it was the harder target (T1m; blue). This relationship reversed
at 200 and 250 ms, with larger MEPs when T1 required more
effort than T2 (T1m, red). The effect was reversed when T2
was chosen (Fig. 4B), because MEPs measured at 150 ms were
smaller when T2 was the biomechanically harder target (T1M;
red) than when it was the easier target (T1m; blue).

A similar reversal between 150 and 200 ms was observed
when the interaction effect of distance and choice on MEPs
was examined (Fig. 5, A and B). When T1 was chosen, MEPs
at 150 ms were larger when T1 was closer than when T2 was
closer (Fig. 5A). In contrast, MEPs at 200 ms were larger when
T1 was further than T2. In other words, the MEPs exhibited a
reversal between 150 and 200 ms as a function of relative path
length. In a complementary fashion, when T2 was chosen, the
MEPs at 150 ms exhibited a tendency to be larger when T2 was
closer than T1 (Fig. 5B). In contrast, MEPs at 200 ms were
larger when T2 was further than T1.

Additional interaction effects were reported by the ANOVA
for later MEPs, such as B�D at 250 ms and B�D�C at 350
m. The interaction between biomechanics and distance irre-
spective of target chosen (B�D) exhibited a reversal at 250 ms
(data not shown). The MEPs were stronger when T1 was closer
than T2 in the T1M arrangement, and the reverse was seen in
the T1m arrangement. The three-way interaction (B�D�C) at
350 ms is shown in Fig. 6. When T1 was selected despite being
far, MEPs were larger in the T1M arrangement (red) than in the
T1m arrangement (blue). However, these relationships re-
versed when T1 was close, with larger MEPs in the T1m
arrangement. When T2 was chosen, all of these effects were
inverted (Fig. 6, bottom).

The transition from competition to implementation. To sum-
marize the results so far, we observed two main trends in the
MEPs as a function of stimulation time. At 150 ms after targets
and via-points appeared, MEPs were generally larger for those
movements that subjects tended to prefer (when T1 was in the
major arrangement and/or was the closer target). However,
later in the trial, this effect disappeared, and the MEPs ap-
peared to become more closely related to the muscular effort
associated with the chosen movement (i.e., larger MEPs when
T1 requires more effort). This was clearly seen for the influ-
ence of biomechanics (Fig. 4A), reaching significance at 200
and 250 ms (a trend seen for all 8 subjects). However, it was
not consistent for the effect of path length (Fig. 5A): at 200 ms,
the MEPs were higher for the far than the close targets (6/8
subjects), as predicted, but this did not persist and even
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Fig. 4. A: MEP amplitudes expressed in mV for a typical subject (top), averaged across subjects (middle), and z-normalized with respect to baseline (bottom)
as a function of biomechanics (B) and chosen target (C) for trials in which T1 was selected. Red lines show data from the T1M arrangement pooled across
different distances. Blue lines show data from the T1m arrangement pooled across distances. To better assess the effect of biomechanics during the early delay
period, we magnified the y-range for the first 3 (nonbaseline) stimulation times (until the vertical dashed line). B: same as A for trials in which T2 was selected.
In both panels, significant effects (KS test) are indicated (*P � 0.5; **P � 0.01; ***P � 0.001; ****P � 0.0001).
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reversed (for 4/8 subjects as well as for the normalized aver-
age) at 300 ms. We do not presently have an explanation for
this finding, which should be further explored in future
research.

Finally, we investigated how well the z-normalized MEPs at
each stimulation time correlated with the subject’s preference
and/or with the muscular effort associated with the impending
movement. First, we calculated the relative MEP amplitude as
the difference between the z-normalized MEPs during T1 vs.
T2 choices in each of the six arrangements of targets. We also
estimated the relative energetic demand for the two potential
movements as the difference in net muscle work to each target
in each arrangement (see Fig. 7A). Based on these, we per-
formed two regression analyses. The first examined how rela-
tive MEP amplitude predicts subject choices (Fig. 7B). The
second examined how it varies as a function of the relative
energetic demand required by movements to T1 vs. T2 (Fig.
7C). Consistent with the results described above, at 150 ms
there was a significant positive relationship between the rela-
tive MEP amplitude and the probability of choosing T1 (R2 �
0.87, P � 0.0017) and a significant negative relationship
between the relative MEP amplitude and the relative energetic
demand (R2 � 0.87, P � 0.0011). In other words, the relative
MEP amplitude at 150 ms covaried with the subjects’ prefer-
ence for movements that required less energy. At 200 ms, both
of these relationships reversed (probability of choosing T1:
R2 � 0.73, P � 0.045; relative energy: R2 � 0.73, P � 0.031),
and relative MEP amplitude more closely reflects the energetic
cost of the movement that will be chosen. The correlations seen
at 200 ms did not remain significant later in the trial, possibly

because the gains of our muscles were significantly different
when acting as agonists to T1 than when acting as antagonists
to T2.

Controlling for the impact of EMG activation on MEP
amplitudes. We recorded MEPs from two proximal muscles
during a delay period. To minimize the possibility of contam-
ination of MEPs by the underlying EMG activation, we elim-
inated those trials in which EMG activation was within 50 ms
of the MEP. Furthermore, to provide a quantitative control of
the effectiveness of this method, we performed a correlation
analysis between MEP amplitudes and EMG activations, re-
corded during the same time window. The resulting P values
for each muscle and stimulation time are shown in Tables 2 and 3. In
summary, for the two times of interest, 150 and 200 ms, only
1/16 (6.75%) cases exhibited some significant correlation at
150 ms and only 2/16 (13.5%) at 200 ms (P � 0.05). Hence,
for the interval of interest in this study, MEPs and EMGs can
be safely considered uncorrelated.

DISCUSSION

While studies of decision-making have traditionally focused
on the kinds of cognitive decisions that characterize human
economic choices, the neural mechanisms underlying decision-
making evolved long before abstract cognitive abilities. At the
time the relevant neural circuits were being established, most
decisions were between concrete actions such as run left vs.
right or reach for one branch or another. Making such “em-
bodied decisions” entails more than just abstract representa-
tions of outcome value and includes a wide variety of senso-
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rimotor contingencies, such as the ease of a movement or its
energy requirements. This may explain why many neurophys-
iological studies have consistently found correlates of decision
variables within the same sensorimotor circuits that are in-
volved in the planning and online guidance of movement
(Cisek and Kalaska 2010; Gold and Shadlen 2007; Hernández
et al. 2010). For example, while a decision is being made,
neural activity in parietal and premotor regions of the oculo-
motor and arm movement systems encodes the potential ac-
tions in parallel (Baumann et al. 2009; Cisek and Kalaska
2005; Klaes et al. 2011; McPeek and Keller 2002) and is
modulated by many factors relevant for a choice, including
expected gain (Glimcher 2002; Pastor-Bernier and Cisek
2011), local income (Sugrue et al. 2005), and probability
(Thura and Cisek 2014; Yang and Shadlen 2007). Furthermore,
the interactions between potential targets depend on their
spatial similarity (Pastor-Bernier and Cisek 2011), consistent
with a competition that takes place in a sensorimotor map
representing possible movement parameters. These results can
be explained by models (e.g., Cisek 2007) in which potential
actions compete against each other in the sensorimotor system,
and this competition is biased by influences arriving from other
regions, including outcome value estimates from orbitofrontal
cortex (Padoa-Schioppa 2011), action value computation from
anterior cingulate cortex (Kennerley et al. 2011), selection
rules from dorsolateral prefrontal cortex (Miller 2000; Miller et
al. 2002; Tanji and Hoshi 2001), and biasing signals from the
basal ganglia (Redgrave et al. 1999).

In the present study, we investigated how a competition
between two potential reaching actions is biased by informa-

tion about their kinematic and kinetic costs. We expected that
information about the relative path length would be processed
very quickly because it presumably involves the fast dorsal
visuomotor stream. In contrast, we expected that computing the
more subtle biomechanical costs of the potential movements
would take more time, assuming that it involves sophisticated
computation through mental rehearsal or a predictive “forward
model” (Jordan and Rumelhart 1992; Miall and Wolpert 1996).

Contrary to our expectations, the biasing effect of biome-
chanics was in fact very fast. As shown in Fig. 2A, the effect
of biomechanics was significant even if subjects were only
given 200 ms to view the stimulus display before initiating
movement. In further contrast to our expectations, although the
effect of biomechanics was equally strong at all observation
intervals, the effect of relative path length became stronger
between 200 and 600 ms. One explanation for this phenome-
non is that the influence of path length on choices was not
related to a purely spatial preference, as we initially hypothe-
sized, but that it too was due to a preference for movements
requiring less energy. However, because path length has only
a small effect on the total energetic demand of a movement,
smaller than the effect of biomechanics (Cos et al. 2012), it
may thus exert only a weak bias whose influence on the
decision develops more slowly and always follows the initial
specification of which muscles will produce the movement. It
is also relevant that although cells in the dorsal premotor cortex
exhibit directional tuning shortly after target appearance, their
modulation by path length develops gradually over 200–300
ms (Messier and Kalaska 2000).

In previous studies we conducted an analysis of the contri-
bution of biomechanics and path length to the overall energy
associated with each movement (Cos et al. 2011, 2012; see also
the work of Dounskaia et al. 2011) and reached a similar
conclusion: the direction of movement has a major impact on
energetic demand, whereas the impact of path length is rela-
tively small. Indeed, a major factor influencing preferences
may be related to the number of joints involved in the move-
ment, since the major axis of the mobility ellipse is mostly
coincident with the direction of single-joint movements. Fur-
thermore, in an earlier study (Cos et al. 2012) we examined
how the preference for lower biomechanical cost interacted
with control constraints, such as target size and the requirement
to stop in the target, and found that the addition of both of these
constraints reduced the bias associated with biomechanics.

The behavioral results were largely corroborated by the
TMS data, which confirmed that the biasing effects of biome-
chanics and path length were reflected in CSE as early as 150
ms after stimulus presentation. This suggests that TMS can be
used to probe the state of an evolving decision between actions
involving proximal muscles (deltoid and triceps) as well as the
distal muscles (e.g., first dorsal interosseus) used in most
studies (Klein et al. 2014; Klein-Flügge and Bestmann 2012;
Michelet et al. 2010; van Elswijk et al. 2007).

The speed with which biomechanical and geometric factors
appeared to influence subject choices raises the question of
what mechanisms may be responsible. Previous studies have
shown that neural activity in frontal eye field discriminates pro-
vs. anti-saccade instructions in 120 ms (Sato et al. 2003),
whereas activity in dorsal premotor reflects an instructed
choice within 130 ms of a cue (Cisek and Kalaska 2005). In
general, activity patterns across diverse regions of monkey
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cerebral cortex reflect a simple decision about 150 ms after cue
onset (Ledberg et al. 2007). In the present study we found a
significant biasing effect on human CSE at around the same
time, despite the fact that the biasing factors in our task would
seem to require significantly more computation.

We consider two possible explanations for the speed of these
effects. First, subjects could have memorized the costs of
movements to specific spatial locations and simply recall them
when they are presented with target stimuli in those locations.
Previous studies have shown that when the physical effort of
candidate movements is explicitly indicated by stimulus cues,
it quickly modulates neural activity in anterior cingulate cortex
(Kennerley et al. 2011) and, to a lesser degree, in basal ganglia
(Pasquereau and Turner 2013). Thus it is possible that in the
present study subjects simply associated a learned cost with

each spatial location. Although we cannot completely exclude
this possibility in the present data, comparable behavioral
results were found in our earlier studies (Cos et al. 2011, 2012)
in which we included a number of controls that made a
memory-based strategy unlikely (locations and orientations of
targets and starting points were varied randomly, and similar
points in space were approached from different directions with
different biomechanical costs).

An alternative explanation for the rapidity of the biasing
effect is that the brain really is able to compute biomechanical
costs very quickly, and the result of this computation can
quickly bias activity in the motor cortex. Indeed, if the mech-
anism that computes the biomechanical costs involves the same
forward model that is also used in the online guidance of
movement (Jordan and Rumelhart 1992; Miall and Wolpert
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Fig. 7. A: the relative MEP amplitude in each of the 6 arrangements plotted as a function of stimulation time. Solid lines indicate T1M arrangement and dotted
lines T1m arrangement. Numbers indicate the energy (E, in mJ) required for each movement. B: the probability of choosing target T1 in each of the 6
arrangements (Fig. 5A) plotted against the relative MEP amplitude in T1 minus T2 trials at different stimulation times. Filled circles, T1M; open circles, T1m;
Prob., probability of choosing. Solid lines indicate statistically significant regressions (P � 0.05). C: the relative MEP amplitude plotted against the relative
energy of T1 vs. T2 in each of the 6 arrangements. Again, solid lines indicate statistically significant regressions.

Table 2. Deltoid EMG vs. MEP correlation analysis

Subject 150 ms 200 ms 250 ms 300 ms 350 ms

1 (CB) 0.42 0.36 0.36 0.39 0.47
2 (LW) 0.36 0.32 0.34 0.37 0.37
3 (NT) 0.75 0.51 0.97 0.54 0.0011
4 (RA) 0.83 0.71 0.68 0.33 0.12
5 (CK) 0.52 0.00094 0.61 0.54 0.56
6 (BB) 0.44 0.57 0.86 0.31 0.022
7 (AC) 0.51 0.52 0.27 0.45 0.73
8 (ND) 0.32 0.96 0.87 0.012 0.73

P values were obtained from the correlation analysis between MEP ampli-
tudes and electromyographic (EMG) amplitudes at each stimulation time for
the deltoid muscle. Bold values indicate statistical significance (P � 0.01).

Table 3. Triceps EMG vs. MEP correlation analysis

Subject 150 ms 200 ms 250 ms 300 ms 350 ms

1 (CB) 0.0011 0.24 0.7 0.45 0.49
2 (LW) 0.43 0.35 0.16 0.33 0.42
3 (NT) 0.13 0.55 0.93 0.24 0.00057
4 (RA) 0.24 0.35 0.16 0.37 0.92
5 (CK) 0.32 0.0079 0.0014 0.00072 6E-5
6 (BB) 0.31 0.2 0.94 0.12 0.22
7 (AC) 0.22 0.92 0.99 0.039 0.48
8 (ND) 0.21 0.051 0.31 0.014 0.033

P values were obtained from the correlation analysis between MEP ampli-
tudes and EMG amplitudes at each stimulation time for the triceps muscle.
Bold values indicate statistical significance (P � 0.01).
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1996), then it would clearly have to be very fast. Nevertheless,
it is interesting to note that in a pilot study with a version of our
task in which subjects were free to respond at any time, we did
not observe a significant influence of biomechanics (unpub-
lished observations). It is possible that subjects preferred to
save time by making early decisions, too early for the subtle
effects of biomechanics to bias their choices.

Although CSE at 150 ms was well correlated with the choice
of the selected movement, that relationship apparently reversed
at 200 ms (Fig. 7). There is a straightforward potential expla-
nation for this phenomenon. Previous work has shown that
MEPs scale nearly linearly with impending EMG activity well
before EMG onset (MacKinnon and Rothwell 2000). There-
fore, since EMG is larger for movements requiring larger
energy, it follows that MEPs evoked before movement onset
will scale with the energy of the imminent movement. Thus
what we see in the time course of CSE (Figs. 4–6) may reflect
the shifting influence of two factors: First, early in the trial, we
see the biasing influence of factors that determine the subject’s
choice, which is made very rapidly after stimulus onset. Once
the decision is made, subjects can begin to prepare the muscle
commands that will initiate the movement, in anticipation of
the highly predictable GO signal. At this time, CSE becomes
dominated by preparatory activity, which is higher during trials
in which the agonist will demand more energy.
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