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SUMMARY

Prominent theories of decision making suggest that
the basal ganglia (BG) play a causal role in delibera-
tion between action choices. An alternative hypothe-
sis is that deliberation occurs in cortical regions,
while the BG control the speed-accuracy trade-off
(SAT) between committing to a choice versus
continuing to deliberate. Here, we test these hypoth-
eses by recording activity in the internal and external
segments of the globus pallidus (GPi/GPe) while
monkeys perform a task dissociating the process of
deliberation, the moment of commitment, and
adjustment of the SAT. Our data suggest that unlike
premotor and motor cortical regions, pallidal output
does not contribute to the process of deliberation
but instead provides a time-varying signal that con-
trols the SAT and reflects the growing urgency to
commit to a choice. Once a target is selected by
cortical regions, GP activity confirms commitment
to the decision and invigorates the subsequent
movement.

INTRODUCTION

The role of the basal ganglia (BG) in voluntary behavior has been

a subject of debate for decades (Dudman and Krakauer, 2016;

Turner and Desmurget, 2010). Influential models suggest a role

in motor decision making (Frank, 2011; Mink, 1996; Redgrave

et al., 1999), whereby desired actions are selected and

competing ones suppressed through the direct and indirect

dopamine-dependent pathways (Cox et al., 2015; DeLong,

1990; Leblois et al., 2006). This is supported by decision-related

modulation of neural activity in the striatum (Ding and Gold,

2010; Samejima et al., 2005) and pallidum (Arimura et al.,

2013; Pasquereau et al., 2007), and by reinforcement signals in

dopamine neurons (Dayan and Daw, 2008; Schultz, 1997). How-

ever, activity in the BG output nucleus, the globus pallidus inter-

nus (GPi), reflects choices significantly later than cortical regions

(Arimura et al., 2013; Seo et al., 2012) and in simple reaction time

tasks is largely simultaneous with muscle contraction (Anderson

and Horak, 1985; Mink and Thach, 1991a; Turner and Anderson,

1997). Furthermore, GPi inactivation does not produce deficits in
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reach target selection (Desmurget and Turner, 2008; Mink and

Thach, 1991b) but instead reduces the velocity and extent of

movements (Desmurget and Turner, 2010; Horak and Anderson,

1984; Mink and Thach, 1991b), consistent with regulation of

motivation and response vigor (Turner and Desmurget, 2010;

Yttri and Dudman, 2016). It therefore remains unclear whether

the BG play a causal role in decision making and, if so, precisely

what that role may be.

Here, we investigate the hypothesis that, at least in well-prac-

ticed tasks, the BG do not contribute to the choice between po-

tential movements (which is determined by the cerebral cortex),

but instead provide a time-dependent signal that influences both

the urgency of commitment to that choice and the vigor of the

selected movement (Braunlich and Seger, 2016; Thura and

Cisek, 2014, 2016; van Maanen et al., 2016). This predicts that

during the process of deliberation, activity in the GPi will be

insensitive to the evolving evidence on which the decision is

based and will reflect choices only after commitment is made

in cortical regions. It also predicts that GPi activity will be time

dependent and will reflect an animal’s speed-accuracy trade-

off (SAT) (Bogacz et al., 2010; Forstmann et al., 2010; Thura

et al., 2014).

To test these predictions, we recorded the activity of 107 task-

related pallidal neurons (51 GPe; 56 GPi; see Figure S1) in two

monkeys performing a reach selection task that allows us to

dissociate different aspects of decision making, including the

process of deliberation, the moment of commitment, and the

adjustment of speed versus accuracy trade-offs. In the ‘‘tokens

task’’ (Cisek et al., 2009), monkeys had to guesswhich of two po-

tential reach targets would receive the majority of 15 tokens that

jumped, every 200 ms, from a central circle to one of the two tar-

gets (Figure 1A). The monkeys were free to decide at any time,

and when the chosen target was reached the remaining token

jumps accelerated, either to every 150 ms in ‘‘slow’’ blocks or

every 50 ms in ‘‘fast’’ blocks (Figure 1B), which alternated every

75–125 trials. This presents a speed versus accuracy trade-off:

the monkeys could either wait until the decision can be made

with confidence, or guess ahead of time, which is not as reliable

but could improve the overall reward rate. The SAT can be

adjusted between the two blocks: hasty decisions are more ad-

vantageous in fast blocks than slow blocks becausemore time is

saved by guessing quickly. Although each token jump was

completely random, we classified individual trials post hoc

based on the pattern of jumps, defining categories of easy,

ambiguous, or misleading trials (Figure 1C). For comparison

with previous studies, we also recorded these cells in a simple

mailto:david.thura@umontreal.ca
http://dx.doi.org/10.1016/j.neuron.2017.07.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2017.07.039&domain=pdf


A B C

Figure 1. Behavioral Task

(A) The tokens task. Each row illustrates steps in an example trial.

(B) Success probability (SP) profile of an example trial, in which the right target was chosen. Black trace indicates SP before the chosen target is reached, while

tokens jump every 200 ms. After the target is reached (vertical black dashed line), remaining tokens jump either every 150 ms (in slow blocks, blue trace) or every

50ms (fast block, red trace). We subtract frommovement onset time (vertical black dotted line) themeanRT calculated daily using a delayed reach task to yield an

estimate of the decision time (DT, vertical gray dashed line), and the success probability at which the monkey committed to his choice (horizontal gray

dashed line).

(C) Example success probability profiles of ‘‘easy’’ (blue), ‘‘ambiguous’’ (green), or ‘‘misleading’’ (red) trials (see criteria in STAR Methods). See also Figure S2.
delayed reaching task (DR task) in which only a single target is

presented and the timing of movement is externally instructed

by a GO signal.

Our previous studies of behavior in such dynamic decision-

making tasks have led to the ‘‘urgency-gating model’’ (UGM),

which suggests that during deliberation, the brain combines sen-

sory evidence in favor of a given target choice with a growing

‘‘urgency’’ signal that is not specific to either target, and commits

to a choice when their product reaches a threshold (Cisek et al.,

2009; Thura et al., 2012). Consistent with this, we previously

showed that neurons in dorsal premotor (PMd) and primary

motor (M1) cortex continuously reflect the changing choice-spe-

cific evidence conveyed by the tokens and combine it with a non-

specific urgency signal that grows over time in each trial (Thura

and Cisek, 2014). Approximately 280 ms prior to movement

onset, a peak of activity is reached in PMd, signaling commit-

ment to the choice, followed 140 ms later by a peak in M1. We

proposed that to maximize reward rate (Thura et al., 2012; Thura

et al., 2014), the brain adjusts the SAT by modifying the baseline

and slope of the urgency signal. Consistent with this, monkeys

made hastier decisions in the fast than the slow blocks (Thura

et al., 2014) and deliberation-related PMd/M1 activity was stron-

ger in the fast than the slow block, while the commitment-related

peaks were unchanged (Thura and Cisek, 2016). We also found

that the vigor of selected movements was correlated with our

estimate of urgency (Thura et al., 2014), leading us to hypothe-

size that a unified urgency/vigor signal comes from the basal

ganglia via its projections from the GPi through the thalamus to

PMd/M1. This predicts that activity in the GPi will reflect proper-

ties of the urgency signal—that is, it will be insensitive to the

changing evidence during the process of deliberation but will

instead depend on time (showing ramp-like patterns of activity)

and reflect volitional adjustment of the SAT (showing block-

dependent activation).
RESULTS

Behavioral Data
In the present paper, we report behavioral data collected during

sessions in which globus pallidus neurons were recorded (Fig-

ure S2). Data gathered during PMd or M1 recording sessions

have been published and extensively described in previous pub-

lications (Thura and Cisek, 2014; Thura et al., 2014). The present

behavioral results replicate our previous observations. First,

monkeys’ decision duration and success probability at decision

time strongly relied upon evidence provided by the distribution

of tokens. Animals were faster to decide in easy trials compared

to ambiguous ormisleading trials. Their success probability at the

time of choice was higher in the easy trials. Second, the manipu-

lation of the post-decision interval between token jumps (150 ms

in slowblocks versus 50ms in fast blocks) strongly affectedmon-

keys’ strategy: in slow blocks, monkeys were more accurate and

more conservative compared to fast blocks. This is because time

saving is limited in the former condition, dissuading animals from

choosing quickly. This also shows that as expected, monkeys

tradedaccuracy for speeddifferently in the twoconditions.More-

over, except for very fast guesses, animals committed to a choice

with less evidence as time passed in each trial (see Figure S2 and

Thura et al., 2014). This was true in both conditions, but the

evidence needed for commitment was also higher in the slow

condition compared to the fast condition. This suggests that a

growing sense of urgency pushes animals to commit as time is

elapsing. Finally, we previously showed that the influence of

urgency extends to the vigor of the subsequent movement.

Here, we replicate these findings by showing that decision

duration as well as block condition strongly modulate the param-

eters of animals’ reaching movements. Notably, both monkeys

shortened their movement durations in fast blocks compared to

slow blocks and during long decisions compared to short ones,
Neuron 95, 1160–1170, August 30, 2017 1161



Table 1. Motor Discharges in the Globus Pallidus: Count and

Percentage of Correlated or Modulated Cells

GPe GPi

Movement-relateda

Modulated 26/44 59% 28/51 55%

Increase 15/26 58% 18/28 64%

Decrease 13/26 50% 13/28 46%

Spatial tuninga

Tuned 16/44 36% 20/51 39%

Reaching kinematicsb

Reach peak velocity

Slow block 15/51 29% 10/56 18%

Fast block 10/42 24% 13/52 25%

Reach amplitude

Slow block 7/51 14% 13/56 23%

Fast block 11/42 26% 7/52 13%

Reach duration

Slow block 9/51 18% 14/56 25%

Fast block 10/42 24% 20/52 38%

Reach vigor

Slow block 13/51 25% 14/56 25%

Fast block 10/42 24% 17/52 33%

See also Table S1.
aMeasured in the delayed reach task (95 cells tested).
bMeasured in the tokens task (107 cells tested in the slow block, 94 in the

fast block).
a pattern that resembles the urgency signal estimated on the ba-

sis of their decisions (Thura et al., 2014) in the same conditions.

Finally, for one monkey, parameters related to the vigor of move-

ments (reach peak velocity and amplitude) closely followed the

adjustment of the context-dependent growing urgency signal

derived from their choice behavior (see Thura et al., 2014 for an

extensive description of these phenomena).

Neural Activity in the Globus Pallidus
Of the 95 GP cells tested in the DR task, we found that more than

half (54/95) showed significant relations to arm movements

(Table 1, see also Table S1 for data specific to each monkey),

either increasing (33/95) or decreasing (26/95) their firing rate

aroundmovement onset (300ms before until 200ms after move-

ment onset, Turner and Anderson, 1997) compared to the delay

period (a 200ms epoch preceding the GO signal, Wilcoxon rank-

sum test, p < 0.05). As previously reported (Anderson and

Turner, 1991; Mink and Thach, 1991a; Turner and Anderson,

1997, 2005), peri-movement activity of cells in GPe (36%) and

GPi (39%) was directionally tuned in the DR task and often

related to kinematic variables such as reach vigor (25% and

24% of GPe cells in the slow and fast blocks of the tokens

task, respectively; 25% and 33% of GPi cells), peak velocity

(29% and 24% of GPe cells, 18% and 25% of GPi cells) and

reach amplitude (14% and 26% of GPe cells, 23% and 13% of

GPi cells), implicating them in the ‘‘motor loop’’ of the basal

ganglia (Alexander et al., 1990).
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To assess how GP neurons contribute to deliberation and to

compare this contribution with cortical cells, we first used a mul-

tiple linear regression model (see STAR Methods) to investigate

how cortical and pallidal activity during deliberation is influenced

by the direction of each token jump, the target that is ultimately

chosen, the movement vigor, and whether the token jumps into

the currently favored (expected) target.

Effect of the Direction of a Token Jump on Neuronal
Activity
We found that during the first six token jumps, the multiple linear

model significantly explained the neural response of 35%–47%

(mean: 42%) of PMd cells, 20%–34% (mean: 28%) of M1 cells,

8%–24% (mean: 15%) of GPe cells, and 5%–21% (mean:

12%) of GPi cells (F values of the model calculated for each

cell and after each token jump, p < 0.05). Among the four tested

factors, the sensory evidence provided by single token jumps

was the most influential factor (see Figure S3 for the effects of

the other factors). Crucially, the effect of token jump direction

was much stronger in cortical cells compared to pallidal cells

(Figure 2A). During the first six jumps, the regression coefficient

(b1) significantly differed from 0 (null hypothesis of no effect of a

token jump on the neural responses) in 21%–40% of PMd cells,

10%–38% M1 cells, 10%–20% GPe cells, and 5%–16% GPi

cells (t-Stat values of the b1 coefficient calculated for each cell

and after each token jump, p < 0.05). It is also clear that b1 dis-

tributions were wider in cortical cells compared to pallidal cells

(Figure 2A), indicating that although a few GP cells clearly

respond to a token jump (Figure 2B), they are overall only weakly

modulated in comparison to cortical cells.

Influence of a Target Choice on Neural Activity
Next, to examinewhether pallidal cells nevertheless contribute to

target selection, we assessed their directional tuning in the

tokens task using a receiver-operating characteristic (ROC) anal-

ysis on the epoch from 200 ms before commitment until move-

ment onset. We found that 22 GPe (42%) and 27 GPi (48%) cells,

although task related (see STAR Methods), did not exhibit any

tuning at all and thus could not contribute to reach target selec-

tion. The remaining cells (29/51 in the GPe, 29/56 in the GPi)

showed significant tuning but primarily around movement onset.

To determinewhether these tuned cells contribute to deliberation

about the selected target, we analyzed their activity during trials

classified as easy, ambiguous, and misleading, either toward or

away from each cell’s preferred target (PT). We found that in

contrast with PMd and M1 (Figures 3A and 3B), pallidal activity

only weakly reflects the evolving sensory evidence (Figures 3C

and 3D). In particular, while there is a weak effect of sensory ev-

idence on GPe activity, it is virtually absent in the GPi, the output

nucleus of the BG. Note that this difference of influence of sen-

sory evidence on cortical versus pallidal cells is not due to differ-

ences in cell count, as the time course of evidence can clearly be

seen in PMd andM1 even at the level of individual neurons (Thura

and Cisek, 2014), but this was never observed in GPe or GPi.

To further assess these regional differences, we calculated the

correlationbetweencell activity andsensory evidenceat different

moments in timewithin trials. This analysis allows us to include all

trial types and not only the special ones mentioned above. As
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Figure 2. Effect of Token Jumps on Cortical and Pallidal Activity

(A) Distribution of regression coefficients reflecting the influence of each token jump on the neural response of PMd (top panels), M1 (second row panels), GPe

(third row panels), and GPi (bottom panels) cells recorded in the slow condition. Coefficients are computed after each of the first six jumps (columns from left to

right). Black histograms illustrate cells for which a token jump significantly modulated the neural response according to the multiple linear regression model

(Equation 3). Percentages of significantly modulated cells are indicated above each panel.

(B) Left column: responses of PMd (top row), M1 (second row), GPe (third row), and GPi (bottom row) cells showing a significant effect of the first token jump

direction (black histogram in A), averaged during trials in which the first token (black triangle) jumped into the cells’ PT and the second token (gray triangle) jumped

into the OT (solid curves) or trials in which the first token jumped into the OT and the second jumped into the PT (dashed curves). Middle column: same for cells

that are significantly influenced by token jump #2, during trials in which the second token (black triangle) jumped into cells’ PT and the third token (gray triangle)

jumped into cells’ OT (solid) or vice versa (dashed). Right column: same for cells that are significantly influenced by token jump #3, during trials in which the third

token (black triangle) jumped into the PT and the fourth (gray triangle) jumped into the OT (solid) or vice versa (dashed). See also Figure S3.
reported previously (Thura and Cisek, 2014), we observed that

PMd cells and (to a lesser extent) M1 cells are strongly and posi-

tively correlated with the available sensory evidence, from the

beginning of deliberation until commitment (Spearman correla-

tion coefficient, averaged across neurons and time, r = 0.49 in

PMd, r = 0.45 in M1). This correlation is weaker in the GP

(r = 0.37 in GPe; r = 0.26 in GPi). Most importantly, when normal-

ized against background firing rate, the gain between GPe/GPi

activity and sensory evidence is close to zero (Figure 3E). More-

over, we see a gradient of sensitivity: PMd shows the strongest

gain that tends to increase with time; M1 cells exhibit a weaker

and stable gain; while GPe and GPi activity is nearly insensitive

to sensory evidence during the entire deliberation period

(ANCOVA, main effect of recording area on slope, F = 14.46,

p < 0.0001). In short, the evolving evidence onwhich the decision

is based is clearly reflected in PMd and M1, but it is virtually ab-

sent across GPi cells. Thus, we conclude that BG output does

not contribute to determining the target choice in our task.

It has been suggested that, in addition to firing rates, neural

variability across trials can provide further insights about the neu-

ral computations underlying deliberation, choice commitment,

and action execution (Churchland et al., 2006, 2010, 2011). We
thus assessed the possibility that the contribution of BG to action

selection takes part through changes in response variance rather

than in changes in mean firing rates. Using the Fano factor as a

measure of neural variability across trials (Churchland et al.,

2006), we first replicated previous findings showing that premo-

tor and motor neural variability decreases before the execution

of reaching movements (Figure S4B) (Churchland et al., 2010).

We also found such a decrease of variability in GP cells before

movements, although this was weaker in GPi. Importantly, how-

ever, when aligned on the first token jump, we observed that

across-trial variability in GP neurons was unaffected during the

deliberation process (Figure S4A). By contrast, we noted a slight

increase of variability in cortical neurons during decision forma-

tion, especially in PMd, as previously demonstrated in the oculo-

motor system (Churchland et al., 2011). It is also interesting to

note that variability in the GPi was lower than cortical variability

overall, with a Fano factor significantly lower than 1.

Effect of Speed-Accuracy Trade-Off on GP Activity
during Deliberation
The results described above suggest that GP cells are only

weakly involved in the process of selecting a reach target. But
Neuron 95, 1160–1170, August 30, 2017 1163
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Figure 3. Comparison of Activity during Deliberation in PMd, M1, GPe, and GPi

(A) Average response, during the slow block, of 124 tuned PMd neurons during easy (blue), ambiguous (green), and misleading (red) trials in which the monkey

correctly chose the PT (solid curves) or OT (dashed curves). Activity is aligned on the first token jump, and spikes recorded after decision commitment (circles) are

discarded to avoid averaging artifacts. The widths of the colored horizontal bars illustrate themean ± SE of cells’ discrimination time in easy (blue) and ambiguous

(green) trials, with numbers indicating the mean.

(B) Same as (A) for 137 tuned M1 cells.

(C) Same as (A) for 29 tuned GPe cells.

(D) Same as (A) for 29 tuned GPi cells.

(E) Each panel illustrates how activity varies as a function of evidence (calculated as SumLogLR with respect to cells’ PT), 200ms after each of the first nine token

jumps, in the same PMd (blue-green), M1 (violet), GPe (magenta), and GPi (orange) cells shown in (A)–(D). Activity is normalized against baseline and spikes

recorded after decision commitment are discarded. See also Figure S4.
does this mean that these cells do not contribute to any aspect of

decision making? Several previous theoretical and experimental

investigations suggested that the basal ganglia are crucial for the

adjustment of speed-accuracy trade-offs during decision forma-

tion (Bogacz et al., 2010; Forstmann et al., 2010). Our previous

results are consistent with the hypothesis that SAT occurs

through adjustments of an urgency signal, possibly originating

from the basal ganglia, to regulate decision-related activity

in cortical structures (see Thura and Cisek, 2016; Thura

et al., 2014).

To investigate whether GP activity reflects urgency, we exam-

ined individual cells for time-dependent changes of activity

within each trial (see STAR Methods). We found that some cells

(21/51 in GPe, 13/56 inGPi) gradually increased their activity dur-
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ing deliberation (‘‘build-up’’ cells), and some cells showed the

opposite pattern (‘‘decreasing’’ cells, 8/51 GPe and 11/56 GPi).

The remaining �50% cells had ‘‘steady’’ activity during deliber-

ation. Interestingly, build-up cells in the GPi tended to be more

sensitive to sensory evidence compared to other neuron types,

although still much less sensitive and highly lagged compared

to cortical cells (Figure S5).

To test whether these time-dependent activities could be the

neural correlates of the context-dependent urgency signal, we

examined whether they changed between the slow and fast

blocks (42/51 GPe and 52/56 GPi cells tested in both conditions)

to reflect the predicted adjustment of the urgency signal with

changes in the SAT (Thura et al., 2014). We found that most

GP cells (70/94, 75%) were indeed significantly modulated by
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Figure 4. Effect of SAT Condition on GP Activity

(A) Comparison of mean neural activity, for both targets, of 42 GPe (top) and 52 GPi (bottom) neurons recorded during all trials in the slow block (abscissa) versus

the fast block (ordinate) in a 200 ms period preceding the first token jump (baseline period). Colored crosses illustrate the mean (±SE) activity of cells significantly

modulated by the block condition. Red represents stronger activity in the fast blocks. Blue represents stronger activity in the slow blocks. Circles indicate cells

that were not significantly modulated between the blocks. Numbers indicate the number and percentage (in parenthesis) of significantly modulated cells.

(B) Same as (A), but here, activity is compared between blocks in a 200ms epoch extending from 400ms to 600ms after the first token jump (deliberation period).

For this analysis, trials in which decision duration was below 600 ms were excluded.

(C) Example of a GPe neuron’s response in the slow (blue) and fast (red) blocks of trials in the tokens task. Activity is aligned on the first token jump and illustrated

as spike density functions (mean ± SE, computed in bins of 30 ms, top) and rasters displays (bottom). Spikes after commitment time (280 ms before movement

onset, squares) are discarded from the spike density functions.

(D) Example of a GPi neuron’s response in the two speed conditions of the tokens task. Same conventions as in (C).
the block, either before the start of the trial (baseline period, GPe:

8/42, 19%; GPi: 9/52, 17%), during deliberation (GPe: 7/42,

17%; GPi: 8/52, 15%), or during both epochs (Figures 4A and

4B). Interestingly, while less than one-third (13/42) of the GPe

cells are modulated by the SAT context during both baseline

and deliberation, this proportion rises to reach almost 50%

(24/52) in the GPi. Two examples of these modulated cells are

shown in Figures 4C and 4D. The GPe cell, classified as a

build-up cell, is more active in the fast condition compared to

the slow condition. The GPi cell, classified as a decreasing

cell, shows the opposite pattern. Crucially, we found that at

the population level, the modulation between blocks was

congruent with the temporal profile within each block (Figure 5):

build-up cells tended to be more active during fast than slow

blocks, especially in theGPe; while decreasing cells were usually

less active in fast than slow blocks, especially in the GPi. Steady

cells, at the population level, were less modulated. Most impor-

tantly, there was a significant correlation between within-trial

profiles and between-block modulation in both GPe and GPi,

and this was stronger in the latter (Pearson’s correlation, GPe:

r = 0.31, p = 0.04; GPi: r = 0.42, p < 0.002; Figures 5G and 5H).

This means that the activity of cells with the highest positive

(negative) slope was most strongly increased (decreased) in

the fast block relative to the slow block. Additional control ana-

lyses suggest that these activity patterns are not simply related

to the anticipation of reward, because the baseline responses
are not reduced during trials in which the monkey is informed

that no reward will be delivered (see Figure S6).

Neural Activity at the Time of Commitment
If the GPe and GPi do not contribute to target selection in our

task, then why have previous studies (Arimura et al., 2013; Pas-

quereau et al., 2007) shown selection-related activity in these

nuclei? As noted above, in our task deliberation between targets

can be dissociated from commitment, but this was not the case

in previous studies. This raises the possibility that the selection-

related activity reported previously reflected the commitment to

the selected target and not the process by which that target was

selected.

To examine this possibility, we again compared activity in

PMd, M1, GPe, and GPi but now aligned to movement onset

(Figures 6A–6D). In each region, activity tuned to the preferred

target (PT) reaches a peak before movement execution, regard-

less of trial type. That peak is earlier in PMd than in M1, GPe, or

GPi (Figure 6E). A running ROC analysis performed on all cells

with activity aligned to movement onset showed that choice-se-

lective tuning emerges earlier and ismuchmore common in PMd

and M1 compared to GPe and GPi (Figure 6F). Notably, while

some tuning begins to appear in the GP 200–300 ms before

commitment, it remains rare (<10%) and then increases dramat-

ically just around the moment when the PMd population exhibits

its prominent peak (Figure 6F). Indeed, in both GPe and GPi,
Neuron 95, 1160–1170, August 30, 2017 1165
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Figure 5. Time-Dependent Activity in the Globus Pallidus

(A) Average activity (with 95% confidence intervals) of 19 ‘‘build-up’’ GPe cells aligned on the first token jump during the fast (red) and slow blocks (blue) and

truncated before decision commitment (circles). Both correct and errors trials are included.

(B) Same as (A) for a population of 18 ‘‘steady’’ GPe cells.

(C) Same as (A) for 5 ‘‘decreasing’’ GPe cells.

(D–F) Same as (A)–(C) for the same three categories of cells in the GPi.

(G) Correlation between the average variation of activity during deliberation of the 42 GPe neurons recorded in both blocks (calculated as a slope, including slow

block trials from both targets, computed from the first token jump until decision commitment) and the modulation of the block condition on activity during

deliberation (400 to 600 ms after the first token jump). The index of modulation by the block condition is calculated as (FRfast� FRslow)/(FRfast + FRslow). The black

line illustrates the result of a linear regression through the data. Cells whose activity was significantly higher (lower) in the fast block than the slow block are plotted

in red (blue) and symbols indicate whether cells were classified as build-up, steady, or decreasing (see legend).

(H) Same as (G) for 52 GPi cells. See also Figures S5 and S6.
a sharp rise of activity tuned to the selected target conspicuously

occurs around that ‘‘moment of commitment’’ (Figures 6C

and 6D).

DISCUSSION

Although numerous theories have implicated the basal ganglia in

decision making, along with fronto-parietal cortical regions

(Bogacz et al., 2010; Cisek, 2007; Forstmann et al., 2010; Frank,

2011; Mazzoni et al., 2007; Mink, 1996; Redgrave et al., 1999;

Thura et al., 2014; Turner and Desmurget, 2010), their precise

contribution is still under debate (Dudman and Krakauer, 2016;

Turner and Desmurget, 2010). In the present study, we aimed

to determine their potential contribution to the component pro-

cesses of deliberation between target choices, commitment to

a single choice, and the adjustment of the SAT through neural re-
1166 Neuron 95, 1160–1170, August 30, 2017
cordings in the BG output nuclei. Our data show that during

deliberation, information pertinent to selection of reachingmove-

ments is continuously influencing activity in reach-related

regions of PMd and M1 but is much weaker and significantly de-

layed in the BG, particularly in its output via the GPi (Figures 2

and 3). This argues against the role of the BG in the deliberation

process that determines which reach target is selected.

Instead, we found ramp-like patterns of activity, in both GPe

and GPi, that were modulated by the SAT condition in terms of

their baseline (Figures 5A, 5C, and 5F), and to a lesser extent

their slope (Figure 5A). Our data are compatible with the hypoth-

esis that the BG invigorate the decision-making process by

providing an urgency signal that modulates the gain of how sen-

sory evidence influences PMd and M1 activity (Thura and Cisek,

2014, 2016). The urgency signal grows over time and is adjusted

to modulate the SAT such that higher urgency leads to hastier



A

B

C

D

E

F

Figure 6. Comparison of Activity during Commitment in PMd, M1, GPe, and GPi

(A) Activity of the 124 tuned PMd neurons shown in Figure 3A but here aligned on movement onset. Circles and the vertical gray line indicate our estimate of the

moment of commitment (Thura and Cisek, 2014).

(B) Same as (A) for 137 tuned M1 cells.

(C) Same as (A) for 29 tuned GPe cells.

(D) Same as (A) for 29 tuned GPi cells.

(E) Cumulative distributions of the timing of peak activity, relative tomovement onset, of tuned cells recorded in PMd (blue-green), M1 (violet), GPe (magenta), and

GPi (orange). The average timing of each cell’s maximum firing rate is calculated for trials in which themonkey correctly chose the cell’s preferred target, in bins of

20 ms from 750 ms before to 350 ms after movement initiation. Colored dotted and vertical arrows mark for each area the median of the distribution

(PMd:�230ms;M1:�110ms; GPe andGPi:�70ms). The distribution of activity peak timing is significantly earlier in PMd compared to the other areas (Wilcoxon

rank-sum test, p < 0.001).

(F) Percentage of all PMd (blue-green), M1 (violet), GPe (magenta), and GPi (orange) cells showing target-selective activity (ROC score above 0.65 for at least 3

successive bins) as a function of time relative to movement onset in 30 ms time bins. The horizontal arrow marks the average movement period.
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guesses in the fast block (Figures 4 and 5). Such a policy maxi-

mizes reward rate (Thura et al., 2012), consistent with the hy-

pothesis that the BG motivate voluntary behavior (Pasquereau

et al., 2007) and influence movement vigor (Dudman and Kraka-

uer, 2016; Turner and Desmurget, 2010). However, several

important questions remain unanswered. For example, while

we observed that the majority of build-up neurons were in GPe

and the majority of decreasing neurons were in GPi, these

were not exclusive. In the context of current models of the basal

ganglia, it is more difficult to interpret why there should exist

decreasing cells in GPe and build-up cells in GPi, raising chal-

lenges for future work.

Although our data argue against models that ascribe a causal

role of BG in selecting the target choice for goal-directed move-

ment (Mink, 1996; Redgrave et al., 1999), they do implicate the

BG in the final commitment to that choice. Our results are consis-

tent with the proposal that cortical activity reflects a dynamic,

biased competition between candidate actions (Cisek, 2007),

which is gradually amplified by an urgency signal from the BG

that effectively controls the amount of evidence needed before

the animal commits to the currently favored reach choice. As

the cortical bias grows in favor of one of the targets, it begins

to influence activity in the GPe, producing the gradual emer-

gence of tuning in the 200–300ms before commitment (Figure 6).

When that becomes strong enough to engage tuning in the GPi,

the BG ‘‘gate’’ is opened, leading to a positive feedback that

constitutes commitment to the action choice (Brown et al.,

2004). The opening of that gate could involve both the suppres-

sion of GPi cells than inhibit the selected movement as well as

increased activity of GPi cells that inhibit unselected move-

ments, producing the conspicuous increase of tuned activity

that we observed just after the cortical moment of commitment

(Figure 6F).

It is important to note that our results are from a highly prac-

ticed task, which the monkeys have been performing for several

years before we began recording in the GP. Strong evidence

exists that the basal ganglia are implicated in choices during

reinforcement learning (RL). For example, midbrain dopamine

neurons encode a key component of RLmodels, the reward pre-

diction error (e.g., Bayer and Glimcher, 2005), and disruption of

information processing in the basal ganglia during learning

strongly affects choice behavior (e.g., Knowlton et al., 1996;

Piron et al., 2016). It has also been proposed that as a task is

practiced, the associations between stimuli and actions initially

encoded in the basal ganglia are consolidated in the neocortex

(Ashby et al., 2007; Hadj-Bouziane et al., 2003). Thus, it is

possible that in highly practiced tasks like ours, the basal ganglia

are less critical for decision making than in tasks involving

learning (Piron et al., 2016). Furthermore, while our data argue

against the influence of the BG on selection of actions based

on probabilistic information, they may be involved in selecting

choices based on their value. Indeed, the BG receive critical in-

formation related to action value via the nigrostriatal dopamine

signals (Kim et al., 2015; Morris et al., 2006) and future work

should investigate whether this information influences value-

based deliberation in the BG output nuclei.

Finally, while the BG urgency signal is not specific to the selec-

tion of the reach target in our task, it may be specific to the mon-
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key’s motivation to continue performing the task as opposed to

doing something else. Indeed, our results are compatible with

the hypothesis that while BG do not select potential actions

within a given behavioral system (e.g., reach right versus reach

left), they select which behavioral system (e.g., reaching versus

locomotion versus feeding) is prioritized in a given situation (Grill-

ner et al., 2013; Redgrave et al., 1999). More generally, the pre-

sent results lead toward a role of the BG that strongly depends

on motivational factors like reward rate maximization (Haith

et al., 2012; Shadmehr, 2010). A better understanding of such

motor operations in concert with non-motor factors should pro-

vide crucial information about BG-related neurological diseases

affecting both the motor and cognitive aspects of behavior, as in

Parkinson’s disease or impulse control disorders (Mazzoni

et al., 2007).
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Digitizing Tablet GTCO CalComp http://www.gtcocalcomp.com/large-format-digitizers
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David

Thura (david.thura@umontreal.ca).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments were conducted with two male macaque monkeys (Macaca mulatta; S: 4-9 years old, 5-9 kg; Z: 4-6 years old, 4-7 kg).

Both animals were pair-housed in a vivarium with a 12 hr light cycle (6am to 6pm). The local animal ethics committee approved sur-

gery, testing procedure, and animal care.

METHODS DETAILS

Surgery
Both animals were first implanted, under anesthesia and aseptic conditions, with a titanium head fixation post for head stabilization.

Then, after recovery and head-fixed training, animals were implanted with recording chambers allowing vertical penetration of mi-

croelectrodes into the brain via trans-dural guide tubes. A grid, positioned in the horizontal plane and composed of holes (1mm

spacing), was used to ensure an accurate mapping of the successive penetrations performed in PMd, M1 and the basal ganglia.

Apparatus
Monkeys sat head-fixed in a custom primate chair and performed two planar reaching tasks using a vertically-oriented cordless sty-

lus whose position was recorded by a digitizing tablet (CalComp, 125 Hz). Their non-acting hand was restrained on an arm rest with

Velcro bands. In some sessions, unconstrained eye movements were recorded using an infrared camera (ASL, 120 Hz). Stimuli and

continuous cursor feedback were projected onto amirror suspended between themonkey’s gaze and the tablet, creating the illusion

that they are in the plane of the tablet. Neural activity was recorded from the hemisphere contralateral to the acting hand with 1-4

independently moveable (NAN microdrive) microelectrodes (FHC, Alpha-Omega Eng.) and data were acquired with the AlphaLab

system (Alpha-Omega Eng.).
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Behavioral tasks
Monkeys were trained to perform the ‘‘tokens’’ task (Figure 1A) in which they are presented with one central starting circle (1.75 cm

radius) and two peripheral target circles (1.75 cm radius, arranged at 180� around a 5 cm radius circle). The monkey begins each trial

by placing a handle in the central circle, in which 15 small tokens are randomly arranged. The tokens then begin to jump, one-by-one

every 200 ms (‘‘pre-decision interval’’), from the center to one of the two peripheral targets. The monkey’s task is to move the handle

to the target that he believes will ultimately receive the majority of tokens. The monkey is allowed to make the decision as soon as he

feels sufficiently confident, and has 500 ms to bring the cursor into a target after leaving the center. When the monkey reaches a

target, the remaining tokens move more quickly to their final targets (‘‘post-decision interval,’’ which was either 150 ms in ‘‘slow’’

blocks or 50 ms in ‘‘fast’’ blocks. In a few sessions, the post-decision interval was reduced to 20 ms in fast blocks). Once all tokens

have jumped, visual feedback is provided to themonkey (the chosen target turns green for correct choices or red for error trials) and a

drop of water or fruit juice is delivered for choosing the correct target. A 1500 ms inter-trial interval precedes the following trial. We

alternated between slow and fast blocks for about 75-125 trials each, typically several times in each recording session.

The monkeys were also trained to perform a delayed reach (DR) task (usually 30-48 trials per recording session). In this task, the

monkey again begins by placing the cursor in the central circle containing the 15 tokens. Next, one of six peripheral targets is pre-

sented (1.75 cm radius, spaced at 60� intervals around a 5cm radius circle) and after a variable delay (500 ± 100 ms), the 15 tokens

simultaneously jump into that target. This ‘‘GO signal’’ instructs themonkey tomove the handle to the target to receive a drop of juice.

This task is used to determine cell’s task response and tuning as well as the animal’s mean reaction time (RT), used as an estimate of

the total delays attributable to sensory processing and response initiation (see Figure 1B).

In a subset of sessions, we trained monkeys to perform ‘‘never rewarded’’ trials, which were intermixed with regular trials in the

tokens task. This manipulation was performed to control for the possibility that some of the effects described in the present report

were due to the animals’ expectation of reward. In the never rewarded trials, the targets were orange (as opposed to blue in regular

trials) and monkeys never received the reward, even if they made the correct decision. Monkeys thus associated the orange circles

with the ‘‘never rewarded’’ condition, so that they knew at trial start that they would not receive any reward regardless of their choice.

Nevertheless, they still had to complete it to move on to the next, regular trial. Because monkeys typically did not react well to this

condition, we had to keep the number of never rewarded trials very low (typically �5% of trials) during sessions in which the manip-

ulation was performed.

Dataset
The last stage of monkeys’ training in the tokens task involved providing animals with alternating blocks of slow and fast trials of the

tokens task. Based on behavioral data (Thura et al., 2014), we defined two periods during this last stage: first, when behavior was

comparable between the two blocks; and second, when the monkeys began to behave differently in the two blocks, in terms of de-

cision duration and success probability.

All neurophysiological data reported here were acquired from correct or error trials in which the monkeys completed the tokens

task by choosing one of the two targets. Neurons were selected according to their anatomical location and physiological properties

(see Figure S1).

In analyses aimed to explore the effect of sensory evidence as well as the time course of action selection in cortical areas and

globus pallidus, we focused on trials from the slow block. The dataset for these analyses consists of 202 M1 neurons (monkey S,

n = 78), 275 PMd (monkey S, n = 175), 51 GPe (monkey S, n = 19) and 56 GPi (monkey S, n = 22) neurons. 33 PMd cells were recorded

during the first period of the last stage of Monkey S’s training.

In analyses aimed to explore the neural correlates of monkeys’ SAT adjustment between the blocks, we only considered globus

pallidus neurons. The effect of block on PMd and M1 cells is the subject of a separate, recently published paper (Thura and Cisek,

2016). Here, all globus pallidus cells were recorded while monkeys behaved significantly differently in the two SAT conditions, and

only cells recorded in both blocks were included in these analyses (GPe, n = 42, monkey S, n = 15; GPi, n = 52, monkey S, n = 20).

Neural recordings in PMd and M1
The standard procedures for single-unit recordings in the PMd and M1, signal processing and data management have been

described previously (Thura and Cisek, 2014). During recording sessions, we focused on cells showing a change of activity in the

tokens task, and monkeys were usually performing the task while we were searching for cells. When one or more task related cells

were isolated, we ran a block of 30-48 trials of the DR task to determine spatial tuning and select a preferred target (PT) for each cell

(i.e., the target associated with the highest firing rate during one or more task epochs). Next, we ran blocks of tokens task trials using

the PT of an isolated cell and the 180� opposite target (OT). We sometimes simultaneously recorded several task-related cells

showing different spatial preferences, and since we always selected a single pair of targets, the actual best direction for each of

the recorded cells was not always among these two.

We usually started recording cells in the slow block because monkeys were more conservative in this condition. It was thus easier

to assess cell properties online and more convenient to search for cells because fewer rewards were spent. When possible, cells

were tested with multiple repetitions of slow and fast blocks to control for potential confounds related to evolving signals, elapsing

time, and the monkey’s fatigue or satiation (see Thura and Cisek, 2016 for control analyses on this question).
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Neural recording in the globus pallidus
To record cells in the globus pallidus, we first estimated the position of the structure relative to the recording chambers based onMRI

scans and 3D reconstructions using the Brainsight system (see Figure S1). Our goal was to reach GP regions where neurons show

reach-related activity (Turner and Anderson, 1997) and belong to cortico-striato-pallidal loops that connect with M1 and PMd (i.e.,

middle of the GPi nucleus in the rostro-caudal axis; ventral, ventrolateral parts of the nucleus in the dorso-lateral axis (Middleton and

Strick, 2000)). In both animals, penetrations began by crossing the ventral part of premotor cortex (PMv). Next, to guide our electrode

to the globus pallidus, we followed the procedure described in DeLong’s original experiment (DeLong, 1971). After passing beyond

PMv, penetrations moved successively through about 3-8 mm of white matter (depending on the cortex thickness), the putamen

(4-6 mm), the GPe (typically 2 mm) and finally the GPi (Figures S1B and S1C). The boundary between the putamen and GPe was

straightforward to identify, as putamen cells usually exhibited low and sparse firing rates whereas GPe cells were usually spontane-

ously active with high firing rates and brief pauses characteristic of the GPe. As the electrode was lowered further, we usually

observed an absence of activity for about 0.5 to 1.5 mm. Then, background activity increased again and high firing cells were

observed, without pauses in discharge, indicating the beginning of GPi. On average, GPi cells were recorded about 2.5 mm deeper

that GPe cells (Figures S1B and S1C), and as expected (DeLong, 1971), the average baseline firing rate was higher in GPi compared

to GPe (81 Hz versus 64 Hz, Wilcoxon rank-sum test, p = 0.009).

When the globus pallidus (either GPe or GPi) was reached and a cell isolated, its activity in relation with the tokens task (increase or

decrease of activity during any period of the task) was assessed online and only task-related cells were selected and further inves-

tigated. Once selected, the same procedure as the one described for PMd andM1was applied to record spikes in the tokens task as

well as in the DR task. Unlike during cortical recording sessions, only a single electrode was used at a time to record in GP.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data and statistical analyses were performed using built-in and custom MATLAB (MathWorks, Natick, MA) functions and scripts.

Details regarding the statistical tests used can be found in the following section, the main text and/or figure legends. Except when

indicated, the significance level of all statistical tests was set at 0.05. Lower p values are reported when appropriate.

Behavioral data
Methods to analyzemonkeys’ behavior in the tokens task have been described previously (Cisek et al., 2009; Thura and Cisek, 2014).

Briefly, the tokens task allows us to calculate, at each moment in time, the ‘‘success probability’’ associated with choosing each

target. To characterize the success probability profile for each trial, we calculated this quantity (with respect to the target ultimately

chosen by the monkey) for each token jump (Figure 1B). For example, with a total of 15 tokens, if at a particular moment in time the

right target containsNR tokens, the left contains NL tokens, andNC tokens remain in the center, then the probability that the target on

the right will ultimately be the correct one (i.e., the success probability of guessing right) is:

pðR jNR;NL;NCÞ=NC!

2NC

XminðNC ;7�NLÞ

k = 0

1

k!ðNC � kÞ! (Equation 1)

Although each token jump and each trial was completely random, we could classify a posteriori some specific classes of trials

embedded in the fully random sequence (e.g., ‘‘easy,’’ ‘‘ambiguous,’’ or ‘‘misleading’’ trials, Figure 1C). A trial is classified as

‘‘easy’’ if success probability (SP) exceeds 0.6 after two token jumps, 0.75 after five token jumps and 0.75 after eight token jumps.

A trial is ambiguous if the SP is 0.5 after two jumps, between 0.4 and 0.65 after three token jumps, and then between 0.35 and 0.65

after five jumps. A trial is misleading if SP is below 0.4 after three token jumps.

Reaction time in the tokens task was calculated as the time of movement onset (based on kinematics) relative to the time of the first

token jump. Decision time (DT) was estimated by subtracting from the reaction time the monkey’s mean reaction time from the de-

layed reach task performed on the same day. We could then compute for each trial the duration of a decision as well as its success

probability at the time of the decision (SP, Figure 1B). Wilcoxon rank-sum tests were used to compare reaction time, decision dura-

tion or success probability distributions between different conditions (Figure S2).

To quantify sensory evidence, we calculated a simple ‘‘first order’’ approximation of the success probability as the sumof log-likeli-

hood ratios (SumLogLR) of individual token movements:

SumLogLRðnÞ=
Xn

k = 1

log
pðek jSÞ
pðek jUÞ (Equation 2)

where p(ekjS) is the likelihood of a token event ek (a token jumping into either the selected or unselected target) during trials in which

the selected target S is correct, and p(ekjU) is its likelihood during trials in which the unselected target U is correct. The SumLogLR is

proportional to the difference in the number of tokens which have moved in each direction prior to the moment of decision (Cisek

et al., 2009). Here, we thus defined ‘‘sensory evidence’’ as the information, pertinent to the correct choice, which is continuously pre-

sent within the stimulus – i.e., the number of tokens in each target.
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All arm and eye movement data were analyzed offline. Reaching characteristics (onset, offset, duration, amplitude, velocity peak)

were assessed using monkeys’ movement kinematics. Horizontal and vertical position data were first differentiated to obtain a ve-

locity profile and then filtered using a 6th-order low-pass filter with a frequency cutoff of 15 Hz. Onset and offset of movements (used

to calculate movement duration and amplitude) were determined using a 3 cm/s velocity threshold. Peak velocity was determined as

the maximum value between these two events.

An analysis of covariance (ANCOVA) was used to assess the significance of the effects of block and decision duration (as well as

any potential interactions) on sensory evidence at time of commitment as well as on movement parameters (Figure S2).

Neural data analysis
To be included in the analyses related to the time course of deliberation, neurons had to be recorded in the slow block and during at

least 5 trials of each of the special trial types (easy, ambiguous, and misleading). To be included in the analyses related to the SAT

adjustments between blocks, GP cells had to be recorded in at least 50 trials of the slow and the fast blocks (in one ormore repetitions

of each block).

We first defined a multiple linear regression model to assess the impact of a token jump as well as other factors on the neural

response of all PMd, M1, GPe and GPi neurons recorded in the slow block of trials in the tokens task (Figure 2A). Normalized re-

sponses (relative to a 400 ms baseline period) aligned on the first token jump were measured during the deliberation epoch, in

200 ms bins after each of the 6 first token jumps and following a 200 ms delay allowing for sensory conductance (see Figure 2B).

Spikes occurring after commitment time minus 200 ms are discarded to prevent any contamination of activity by action preparation

processes. We used the following regression model to fit neural responses:

FR= I+ b1 � J+ b2 � V+ b3 � T+ b4 � E (Equation 3)

where FR represents the discharge rate in a given epoch, I is the baseline activity, J is the direction of an individual token jump (either 0

or 1 depending on whether the token jumped into one target or the other), V is the vigor of the reaching movement, and T is the target

chosen by the monkey (either 0 or 1 depending on whether the monkey chose one target or the other). Furthermore, inspired by a

computational model of the basal ganglia proposed by Ditterich (2010) and based on a Bayesian framework for interpreting the

role of the BG during decision-making (Bogacz and Gurney, 2007; Bogacz et al., 2016), we investigated whether activity in GPe

and GPi is dependent on whether a given token jumps into the target that is currently expected (has the most tokens). To test

this, we added an additional factor, E, defined as

Ej+ 1 =NjðTÞ � NjðOÞ (Equation 4)

where N(T) represents the number of tokens in the target into which token j+1 jumped, and N(O) is the number of tokens in the other

target.

In the model, the fitted value for the different coefficients provides an estimate of the change in response depending on the cor-

responding factor. Thus, this regression model provides a first-order test of the null hypothesis that a factor does not affect the

collected responses. For instance, the null hypothesis is that jump direction does not affect a neuron activity (H0: b1 = 0). All fits

were obtained using weighted least-squares and activity is normalized to account for differences of overall firing rates of neurons

between cortical and sub-cortical areas.

For all cells recorded in PMd, M1, GPe and GPi, we next investigated those showing a significant spatial preference for one of the

two potential targets before the execution of the reachingmovement. To this aim, we calculated for each cell themean activity related

to each target in bins of 30 ms from 1500 ms before to 500 ms after reaching onset, and assessed the significance using a running

receiver-operating characteristic (ROC) (Green and Swets, 1966; Shadlen et al., 1996) analysis with a criterion of 0.65. In a recent

study (Thura and Cisek, 2014), we showed that some of the PMd cells reflect the deliberation process by tracking the evolution of

sensory evidence and then signal the commitment to the choice about 280 ms before movement execution. Here, we classified a

cell as tuned if the ROC scored above 0.65 during a period extending from 200 ms before this estimate of decision commitment until

the movement onset (i.e., during a 480ms period prior to movement onset).

In this report, we also assessed the relationship of GP activity with movement execution during the delayed reach (DR) task (44/51

GPe and 51/56 GPi cells tested). We first compared the peri-movement activity (from 300 before to 200 ms after movement onset)

(Turner and Anderson, 1997), for each cell and for each of the 6 potential targets, with activity during the late delay period (200 ms

before the GO signal) in the same trial. Movement-related activity (either increasing, decreasing, or both increasing for particular tar-

gets and decreasing for others) was assessed with a Wilcoxon rank-sum test.

Next, we assessed the directional preference of GP cells during the delayed reach (DR) task (Table 1). We compared the peri-

movement activity (from 300 before to 200 ms after movement onset) of each of these cells for the six movement directions and

computed the significance of directional tuning with a non-parametric bootstrap procedure (1000 shuffles, p < 0.05, see Cisek

et al., 2003).

The effect of movement vigor, movement amplitude, and peak velocity on GP cell activity was assessed with trial-by-trial Pearson

correlation analyses in which movement vigor, amplitude or peak velocity and neural firing rate (from 300ms before movement onset

to 200 ms after movement onset) were compared, separately for slow and fast trials in the tokens task (Table 1). If a cell was
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directionally tuned during movement execution, only PT trials were included in the analysis. If not, trials for both directions were

included. We defined vigor as the peak movement speed divided by the movement amplitude.

Cell discrimination times between targets (vertical bars in Figures 3A and 3D) were calculated as times when the difference in ac-

tivity between compared conditions (PT- versus OT-related activity) exceeded 2 standard deviations in a sliding window (size, 10ms;

step, 2 ms) beginning at the first token jump (Sato and Schall, 2003).

For the tuned cells (ROC > 0.65), we investigated the relationship between sensory evidence (calculated as SumLogLR, see Equa-

tion 2) and normalized neural activity related to the cell’s PT as a function of decision duration (in bins of 200ms, corresponding to the

token jumps) in the slow block of trials (Figure 3E). Normalization of each cell’s activity was done by dividing the firing rate with its

averaged baseline activity computed in a 400 ms period preceding the first token jump in slow block trials regardless of the final

choice of themonkey. Spikes occurring after decision commitment were excluded andSpearman’s correlation coefficient was calcu-

lated to assess the robustness of this relationship for each token jump for which at least 4 SumLogLR values were available (with a

minimum of 5 samples for each value). From this analysis, we then focused on the evolution of the slope characterizing the relation-

ship between sensory evidence and normalized neural activity. To compute the slope,we focused on data surrounding the 0 evidence

point. For odd token jump numbers, the two closest data values located apart from the 0 evidence point were considered. For even

jump numbers, three measures were considered (SumlogLR = 0 and the two closest data values apart from SumLogLR = 0). An anal-

ysis of covariance (ANCOVA) was used to assess the significance of the effect of neurons’ recording location and decision duration

on the steepness of the slopes.

The measure of the across-trial neural variability was performed using the Fano factor (Figure S4), defined as the spike-count vari-

ance divided by the spike-count mean, with counts computed in a 75ms sliding window, using the code employed in Churchland

et al. (2010) and made available by the authors (http://churchlandlab.neuroscience.columbia.edu/links.html). In the present paper,

we assessed the variability of the tuned PMd, M1, GPe and GPi cells during two epochs, either during early deliberation (from

300 ms before to 800 ms after the first token jump) or before and during movement execution (from 800 ms before to 300 ms after

movement onset). For each population of cells, all trials in which decision duration was above 600 ms were included in the analysis.

The timing of peak activity in each area was calculated as cells’ PT-related maximum firing rate relative to movement onset,

computed in bins of 20 ms from 750 ms before movement onset to 350 ms after movement onset. Statistical significance of differ-

ences in peak activity timing across areas was assessed with a Wilcoxon rank-sum test (Figure 6E).

To assess the pattern of GP cells’ activity variation during the deliberation period, we computed for each cell a trial-by-trial Pear-

son’s correlation coefficient on activity binned every 5ms from the first token jump until our estimate of decision commitment (280ms

before movement onset), regardless of the final choice of the monkey. If we observed more than 15% of trials with positive and sig-

nificant correlation between activity and time compared to trials with negative and significant correlation between activity and time,

we classified the cell as a ‘‘build-up’’ cell. If the cell showed the opposite result, it was classified as a ‘‘decreasing’’ cell. Cells that did

not belong to either of the two above categories were classified as ‘‘steady’’ cells. This criterion delineated three categories of neu-

rons in the globus pallidus, as shown in Figure 5.

The effects of block (slow versus fast) onGP cells were assessed via comparisons of averaged neural activity in two 200ms epochs

of the task: a baseline period, the 200 ms preceding the first token jump, and a deliberation period, from 400 to 600 ms after the first

token jump. For the deliberation period, all decisions shorter than 600 ms were excluded from the analyses. In each individual cell,

robustness of the effect of block was assessed with a Wilcoxon rank-sum test (Figures 4A and 4B).

We assessed the robustness of the effect of block on the GP population average response (Figures 5A–5F) with a bootstrap test,

consisting in the resampling of the firing rates of each cell 1000 times in the two block conditions to produce distributions of means in

each 30ms bins from 500ms before the first token jump until decision time. We then computed the 2.5%–97.5%percentiles of these

distributions of resampled data to get the upper and lower bounds of the confidence interval (CI).

Instantaneous firing rate was assessed via a partial inter-spike interval method.When analyzing data with respect to the start of the

trial (1st token jump), we always exclude all spikes occurring after our estimate of decision commitment (280ms before movement

onset), i.e., any activity associated with movement initiation and/or execution. This is important in order to prevent averaging artifacts

due to the very wide range of decision durations in the tokens task.

DATA AND SOFTWARE AVAILABILITY

Analysis-specific code and datasets are available by request to the Lead Contact: david.thura@umontreal.ca.
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